mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-04 13:20:12 +06:00
461 lines
19 KiB
Python
461 lines
19 KiB
Python
#!/usr/bin/env python
|
|
# coding=utf-8
|
|
# Copyright The HuggingFace Team and The HuggingFace Inc. team. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""
|
|
Fine-tuning the library models for multiple choice.
|
|
"""
|
|
# You can also adapt this script on your own multiple choice task. Pointers for this are left as comments.
|
|
|
|
import logging
|
|
import os
|
|
import sys
|
|
from dataclasses import dataclass, field
|
|
from itertools import chain
|
|
from pathlib import Path
|
|
from typing import Optional
|
|
|
|
import datasets
|
|
import numpy as np
|
|
import tensorflow as tf
|
|
from datasets import load_dataset
|
|
|
|
import transformers
|
|
from transformers import (
|
|
CONFIG_NAME,
|
|
TF2_WEIGHTS_NAME,
|
|
AutoConfig,
|
|
AutoTokenizer,
|
|
HfArgumentParser,
|
|
TFAutoModelForMultipleChoice,
|
|
TFTrainingArguments,
|
|
create_optimizer,
|
|
set_seed,
|
|
)
|
|
from transformers.utils import check_min_version
|
|
|
|
|
|
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
|
|
check_min_version("4.14.0.dev0")
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
# region Helper classes and functions
|
|
class SavePretrainedCallback(tf.keras.callbacks.Callback):
|
|
# Hugging Face models have a save_pretrained() method that saves both the weights and the necessary
|
|
# metadata to allow them to be loaded as a pretrained model in future. This is a simple Keras callback
|
|
# that saves the model with this method after each epoch.
|
|
def __init__(self, output_dir, **kwargs):
|
|
super().__init__()
|
|
self.output_dir = output_dir
|
|
|
|
def on_epoch_end(self, epoch, logs=None):
|
|
self.model.save_pretrained(self.output_dir)
|
|
|
|
|
|
def convert_dataset_for_tensorflow(
|
|
dataset, non_label_column_names, batch_size, dataset_mode="variable_batch", shuffle=True, drop_remainder=True
|
|
):
|
|
"""Converts a Hugging Face dataset to a Tensorflow Dataset. The dataset_mode controls whether we pad all batches
|
|
to the maximum sequence length, or whether we only pad to the maximum length within that batch. The former
|
|
is most useful when training on TPU, as a new graph compilation is required for each sequence length.
|
|
"""
|
|
|
|
def densify_ragged_batch(features, label=None):
|
|
features = {
|
|
feature: ragged_tensor.to_tensor(shape=batch_shape[feature]) for feature, ragged_tensor in features.items()
|
|
}
|
|
if label is None:
|
|
return features
|
|
else:
|
|
return features, label
|
|
|
|
feature_keys = list(set(dataset.features.keys()) - set(non_label_column_names + ["label"]))
|
|
if dataset_mode == "variable_batch":
|
|
batch_shape = {key: None for key in feature_keys}
|
|
data = {key: tf.ragged.constant(dataset[key]) for key in feature_keys}
|
|
elif dataset_mode == "constant_batch":
|
|
data = {key: tf.ragged.constant(dataset[key]) for key in feature_keys}
|
|
batch_shape = {
|
|
key: tf.concat(([batch_size], ragged_tensor.bounding_shape()[1:]), axis=0)
|
|
for key, ragged_tensor in data.items()
|
|
}
|
|
else:
|
|
raise ValueError("Unknown dataset mode!")
|
|
|
|
if "label" in dataset.features:
|
|
labels = tf.convert_to_tensor(np.array(dataset["label"]))
|
|
tf_dataset = tf.data.Dataset.from_tensor_slices((data, labels))
|
|
else:
|
|
tf_dataset = tf.data.Dataset.from_tensor_slices(data)
|
|
if shuffle:
|
|
tf_dataset = tf_dataset.shuffle(buffer_size=len(dataset))
|
|
options = tf.data.Options()
|
|
options.experimental_distribute.auto_shard_policy = tf.data.experimental.AutoShardPolicy.OFF
|
|
tf_dataset = (
|
|
tf_dataset.with_options(options)
|
|
.batch(batch_size=batch_size, drop_remainder=drop_remainder)
|
|
.map(densify_ragged_batch)
|
|
)
|
|
return tf_dataset
|
|
|
|
|
|
# endregion
|
|
|
|
# region Arguments
|
|
@dataclass
|
|
class ModelArguments:
|
|
"""
|
|
Arguments pertaining to which model/config/tokenizer we are going to fine-tune from.
|
|
"""
|
|
|
|
model_name_or_path: str = field(
|
|
metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"}
|
|
)
|
|
config_name: Optional[str] = field(
|
|
default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"}
|
|
)
|
|
tokenizer_name: Optional[str] = field(
|
|
default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}
|
|
)
|
|
cache_dir: Optional[str] = field(
|
|
default=None,
|
|
metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"},
|
|
)
|
|
use_fast_tokenizer: bool = field(
|
|
default=True,
|
|
metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."},
|
|
)
|
|
model_revision: str = field(
|
|
default="main",
|
|
metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."},
|
|
)
|
|
use_auth_token: bool = field(
|
|
default=False,
|
|
metadata={
|
|
"help": "Will use the token generated when running `transformers-cli login` (necessary to use this script "
|
|
"with private models)."
|
|
},
|
|
)
|
|
|
|
|
|
@dataclass
|
|
class DataTrainingArguments:
|
|
"""
|
|
Arguments pertaining to what data we are going to input our model for training and eval.
|
|
"""
|
|
|
|
train_file: Optional[str] = field(default=None, metadata={"help": "The input training data file (a text file)."})
|
|
validation_file: Optional[str] = field(
|
|
default=None,
|
|
metadata={"help": "An optional input evaluation data file to evaluate the perplexity on (a text file)."},
|
|
)
|
|
overwrite_cache: bool = field(
|
|
default=False, metadata={"help": "Overwrite the cached training and evaluation sets"}
|
|
)
|
|
preprocessing_num_workers: Optional[int] = field(
|
|
default=None,
|
|
metadata={"help": "The number of processes to use for the preprocessing."},
|
|
)
|
|
max_seq_length: Optional[int] = field(
|
|
default=None,
|
|
metadata={
|
|
"help": "The maximum total input sequence length after tokenization. If passed, sequences longer "
|
|
"than this will be truncated, sequences shorter will be padded."
|
|
},
|
|
)
|
|
pad_to_max_length: bool = field(
|
|
default=False,
|
|
metadata={
|
|
"help": "Whether to pad all samples to the maximum sentence length. "
|
|
"If False, will pad the samples dynamically when batching to the maximum length in the batch. More "
|
|
"efficient on GPU but very bad for TPU."
|
|
},
|
|
)
|
|
max_train_samples: Optional[int] = field(
|
|
default=None,
|
|
metadata={
|
|
"help": "For debugging purposes or quicker training, truncate the number of training examples to this "
|
|
"value if set."
|
|
},
|
|
)
|
|
max_eval_samples: Optional[int] = field(
|
|
default=None,
|
|
metadata={
|
|
"help": "For debugging purposes or quicker training, truncate the number of evaluation examples to this "
|
|
"value if set."
|
|
},
|
|
)
|
|
|
|
def __post_init__(self):
|
|
if self.train_file is not None:
|
|
extension = self.train_file.split(".")[-1]
|
|
assert extension in ["csv", "json"], "`train_file` should be a csv or a json file."
|
|
if self.validation_file is not None:
|
|
extension = self.validation_file.split(".")[-1]
|
|
assert extension in ["csv", "json"], "`validation_file` should be a csv or a json file."
|
|
|
|
|
|
# endregion
|
|
|
|
|
|
def main():
|
|
# region Argument parsing
|
|
# See all possible arguments in src/transformers/training_args.py
|
|
# or by passing the --help flag to this script.
|
|
# We now keep distinct sets of args, for a cleaner separation of concerns.
|
|
|
|
parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TFTrainingArguments))
|
|
if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
|
|
# If we pass only one argument to the script and it's the path to a json file,
|
|
# let's parse it to get our arguments.
|
|
model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
|
|
else:
|
|
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
|
|
|
|
output_dir = Path(training_args.output_dir)
|
|
output_dir.mkdir(parents=True, exist_ok=True)
|
|
# endregion
|
|
|
|
# region Logging
|
|
logging.basicConfig(
|
|
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
|
|
datefmt="%m/%d/%Y %H:%M:%S",
|
|
handlers=[logging.StreamHandler(sys.stdout)],
|
|
)
|
|
log_level = training_args.get_process_log_level()
|
|
logger.setLevel(log_level)
|
|
datasets.utils.logging.set_verbosity(log_level)
|
|
transformers.utils.logging.set_verbosity(log_level)
|
|
transformers.utils.logging.enable_default_handler()
|
|
transformers.utils.logging.enable_explicit_format()
|
|
# endregion
|
|
|
|
# region Checkpoints
|
|
checkpoint = None
|
|
if len(os.listdir(training_args.output_dir)) > 0 and not training_args.overwrite_output_dir:
|
|
if (output_dir / CONFIG_NAME).is_file() and (output_dir / TF2_WEIGHTS_NAME).is_file():
|
|
checkpoint = output_dir
|
|
logger.info(
|
|
f"Checkpoint detected, resuming training from checkpoint in {training_args.output_dir}. To avoid this"
|
|
" behavior, change the `--output_dir` or add `--overwrite_output_dir` to train from scratch."
|
|
)
|
|
else:
|
|
raise ValueError(
|
|
f"Output directory ({training_args.output_dir}) already exists and is not empty. "
|
|
"Use --overwrite_output_dir to continue regardless."
|
|
)
|
|
# endregion
|
|
|
|
# Set seed before initializing model.
|
|
set_seed(training_args.seed)
|
|
|
|
# region Load datasets
|
|
# Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below)
|
|
# or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/
|
|
# (the dataset will be downloaded automatically from the datasets Hub).
|
|
|
|
# For CSV/JSON files, this script will use the column called 'text' or the first column if no column called
|
|
# 'text' is found. You can easily tweak this behavior (see below).
|
|
|
|
# In distributed training, the load_dataset function guarantee that only one local process can concurrently
|
|
# download the dataset.
|
|
if data_args.train_file is not None or data_args.validation_file is not None:
|
|
data_files = {}
|
|
if data_args.train_file is not None:
|
|
data_files["train"] = data_args.train_file
|
|
if data_args.validation_file is not None:
|
|
data_files["validation"] = data_args.validation_file
|
|
extension = data_args.train_file.split(".")[-1]
|
|
raw_datasets = load_dataset(extension, data_files=data_files, cache_dir=model_args.cache_dir)
|
|
else:
|
|
# Downloading and loading the swag dataset from the hub.
|
|
raw_datasets = load_dataset("swag", "regular", cache_dir=model_args.cache_dir)
|
|
# See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at
|
|
# https://huggingface.co/docs/datasets/loading_datasets.html.
|
|
|
|
# When using your own dataset or a different dataset from swag, you will probably need to change this.
|
|
ending_names = [f"ending{i}" for i in range(4)]
|
|
context_name = "sent1"
|
|
question_header_name = "sent2"
|
|
# endregion
|
|
|
|
# region Load model config and tokenizer
|
|
if checkpoint is not None:
|
|
config_path = training_args.output_dir
|
|
elif model_args.config_name:
|
|
config_path = model_args.config_name
|
|
else:
|
|
config_path = model_args.model_name_or_path
|
|
|
|
# Distributed training:
|
|
# The .from_pretrained methods guarantee that only one local process can concurrently
|
|
# download model & vocab.
|
|
config = AutoConfig.from_pretrained(
|
|
config_path,
|
|
cache_dir=model_args.cache_dir,
|
|
revision=model_args.model_revision,
|
|
use_auth_token=True if model_args.use_auth_token else None,
|
|
)
|
|
tokenizer = AutoTokenizer.from_pretrained(
|
|
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path,
|
|
cache_dir=model_args.cache_dir,
|
|
use_fast=model_args.use_fast_tokenizer,
|
|
revision=model_args.model_revision,
|
|
use_auth_token=True if model_args.use_auth_token else None,
|
|
)
|
|
# endregion
|
|
|
|
# region Dataset preprocessing
|
|
if data_args.max_seq_length is None:
|
|
max_seq_length = tokenizer.model_max_length
|
|
if max_seq_length > 1024:
|
|
logger.warning(
|
|
f"The tokenizer picked seems to have a very large `model_max_length` ({tokenizer.model_max_length}). "
|
|
"Picking 1024 instead. You can change that default value by passing --max_seq_length xxx."
|
|
)
|
|
max_seq_length = 1024
|
|
else:
|
|
if data_args.max_seq_length > tokenizer.model_max_length:
|
|
logger.warning(
|
|
f"The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the"
|
|
f"model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}."
|
|
)
|
|
max_seq_length = min(data_args.max_seq_length, tokenizer.model_max_length)
|
|
|
|
def preprocess_function(examples):
|
|
first_sentences = [[context] * 4 for context in examples[context_name]]
|
|
question_headers = examples[question_header_name]
|
|
second_sentences = [
|
|
[f"{header} {examples[end][i]}" for end in ending_names] for i, header in enumerate(question_headers)
|
|
]
|
|
|
|
# Flatten out
|
|
first_sentences = list(chain(*first_sentences))
|
|
second_sentences = list(chain(*second_sentences))
|
|
|
|
# Tokenize
|
|
tokenized_examples = tokenizer(first_sentences, second_sentences, truncation=True, max_length=max_seq_length)
|
|
# Un-flatten
|
|
data = {k: [v[i : i + 4] for i in range(0, len(v), 4)] for k, v in tokenized_examples.items()}
|
|
return data
|
|
|
|
if training_args.do_train:
|
|
if "train" not in raw_datasets:
|
|
raise ValueError("--do_train requires a train dataset")
|
|
train_dataset = raw_datasets["train"]
|
|
non_label_columns = [feature for feature in train_dataset.features if feature not in ("label", "labels")]
|
|
if data_args.max_train_samples is not None:
|
|
train_dataset = train_dataset.select(range(data_args.max_train_samples))
|
|
with training_args.main_process_first(desc="train dataset map pre-processing"):
|
|
train_dataset = train_dataset.map(
|
|
preprocess_function,
|
|
batched=True,
|
|
num_proc=data_args.preprocessing_num_workers,
|
|
load_from_cache_file=not data_args.overwrite_cache,
|
|
)
|
|
|
|
if training_args.do_eval:
|
|
if "validation" not in raw_datasets:
|
|
raise ValueError("--do_eval requires a validation dataset")
|
|
eval_dataset = raw_datasets["validation"]
|
|
if not training_args.do_train:
|
|
non_label_columns = [feature for feature in eval_dataset.features if feature not in ("label", "labels")]
|
|
if data_args.max_eval_samples is not None:
|
|
eval_dataset = eval_dataset.select(range(data_args.max_eval_samples))
|
|
with training_args.main_process_first(desc="validation dataset map pre-processing"):
|
|
eval_dataset = eval_dataset.map(
|
|
preprocess_function,
|
|
batched=True,
|
|
num_proc=data_args.preprocessing_num_workers,
|
|
load_from_cache_file=not data_args.overwrite_cache,
|
|
)
|
|
# endregion
|
|
|
|
with training_args.strategy.scope():
|
|
# region Build model
|
|
if checkpoint is None:
|
|
model_path = model_args.model_name_or_path
|
|
else:
|
|
model_path = checkpoint
|
|
model = TFAutoModelForMultipleChoice.from_pretrained(
|
|
model_path,
|
|
config=config,
|
|
cache_dir=model_args.cache_dir,
|
|
revision=model_args.model_revision,
|
|
use_auth_token=True if model_args.use_auth_token else None,
|
|
)
|
|
|
|
num_replicas = training_args.strategy.num_replicas_in_sync
|
|
total_train_batch_size = training_args.per_device_train_batch_size * num_replicas
|
|
total_eval_batch_size = training_args.per_device_eval_batch_size * num_replicas
|
|
if training_args.do_train:
|
|
total_train_steps = (len(train_dataset) // total_train_batch_size) * int(training_args.num_train_epochs)
|
|
optimizer, lr_schedule = create_optimizer(
|
|
init_lr=training_args.learning_rate, num_train_steps=int(total_train_steps), num_warmup_steps=0
|
|
)
|
|
else:
|
|
optimizer = "adam" # Just put anything in here, since we're not using it anyway
|
|
model.compile(
|
|
optimizer=optimizer,
|
|
loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
|
|
metrics=[tf.keras.metrics.SparseCategoricalAccuracy(name="accuracy")],
|
|
)
|
|
# endregion
|
|
|
|
# region Training
|
|
if training_args.do_train:
|
|
tf_train_dataset = convert_dataset_for_tensorflow(
|
|
train_dataset, non_label_column_names=non_label_columns, batch_size=total_train_batch_size
|
|
)
|
|
if training_args.do_eval:
|
|
validation_data = convert_dataset_for_tensorflow(
|
|
eval_dataset, non_label_column_names=non_label_columns, batch_size=total_eval_batch_size
|
|
)
|
|
else:
|
|
validation_data = None
|
|
model.fit(
|
|
tf_train_dataset,
|
|
validation_data=validation_data,
|
|
epochs=int(training_args.num_train_epochs),
|
|
callbacks=[SavePretrainedCallback(output_dir=training_args.output_dir)],
|
|
)
|
|
# endregion
|
|
|
|
# region Evaluation
|
|
if training_args.do_eval and not training_args.do_train:
|
|
# Do a standalone evaluation pass
|
|
tf_eval_dataset = convert_dataset_for_tensorflow(
|
|
eval_dataset, non_label_column_names=non_label_columns, batch_size=total_eval_batch_size
|
|
)
|
|
model.evaluate(tf_eval_dataset)
|
|
# endregion
|
|
|
|
# region Push to hub
|
|
if training_args.push_to_hub:
|
|
model.push_to_hub(
|
|
finetuned_from=model_args.model_name_or_path,
|
|
tasks="multiple-choice",
|
|
dataset_tags="swag",
|
|
dataset_args="regular",
|
|
dataset="SWAG",
|
|
language="en",
|
|
)
|
|
# endregion
|
|
|
|
|
|
if __name__ == "__main__":
|
|
main()
|