transformers/tests/models/glm/test_modeling_glm.py
Cyril Vallez ab1afd56f5
Fix some tests (#35682)
* cohere tests

* glm tests

* cohere2 model name

* create decorator

* update

* fix cohere2 completions

* style

* style

* style

* add cuda in comments
2025-01-17 12:10:43 +00:00

543 lines
22 KiB
Python

# coding=utf-8
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Testing suite for the PyTorch Glm model."""
import unittest
import pytest
from transformers import AutoModelForCausalLM, AutoTokenizer, GlmConfig, is_torch_available
from transformers.testing_utils import (
is_flaky,
require_flash_attn,
require_torch,
require_torch_large_gpu,
require_torch_sdpa,
slow,
torch_device,
)
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
GlmForCausalLM,
GlmForSequenceClassification,
GlmForTokenClassification,
GlmModel,
)
@require_torch
class GlmModelTester:
config_class = GlmConfig
if is_torch_available():
model_class = GlmModel
for_causal_lm_class = GlmForCausalLM
for_sequence_class = GlmForSequenceClassification
for_token_class = GlmForTokenClassification
def __init__(
self,
parent,
batch_size=13,
seq_length=7,
is_training=True,
use_input_mask=True,
use_token_type_ids=False,
use_labels=True,
vocab_size=99,
hidden_size=32,
num_hidden_layers=2,
num_attention_heads=4,
num_key_value_heads=2,
intermediate_size=37,
hidden_act="silu",
attention_dropout=0.1,
max_position_embeddings=512,
type_vocab_size=16,
type_sequence_label_size=2,
initializer_range=0.02,
num_labels=3,
num_choices=4,
pad_token_id=0,
scope=None,
):
self.parent = parent
self.batch_size = batch_size
self.seq_length = seq_length
self.is_training = is_training
self.use_input_mask = use_input_mask
self.use_token_type_ids = use_token_type_ids
self.use_labels = use_labels
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.num_key_value_heads = num_key_value_heads
self.intermediate_size = intermediate_size
self.hidden_act = hidden_act
self.attention_dropout = attention_dropout
self.max_position_embeddings = max_position_embeddings
self.type_vocab_size = type_vocab_size
self.type_sequence_label_size = type_sequence_label_size
self.initializer_range = initializer_range
self.num_labels = num_labels
self.num_choices = num_choices
self.pad_token_id = pad_token_id
self.scope = scope
self.head_dim = self.hidden_size // self.num_attention_heads
# Copied from tests.models.mistral.test_modeling_mistral.MistralModelTester.prepare_config_and_inputs
def prepare_config_and_inputs(self):
input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
input_mask = None
if self.use_input_mask:
input_mask = torch.tril(torch.ones_like(input_ids).to(torch_device))
token_type_ids = None
if self.use_token_type_ids:
token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size)
sequence_labels = None
token_labels = None
choice_labels = None
if self.use_labels:
sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels)
choice_labels = ids_tensor([self.batch_size], self.num_choices)
config = self.get_config()
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def get_config(self):
return self.config_class(
vocab_size=self.vocab_size,
hidden_size=self.hidden_size,
num_hidden_layers=self.num_hidden_layers,
num_attention_heads=self.num_attention_heads,
num_key_value_heads=self.num_key_value_heads,
intermediate_size=self.intermediate_size,
hidden_act=self.hidden_act,
attention_dropout=self.attention_dropout,
max_position_embeddings=self.max_position_embeddings,
initializer_range=self.initializer_range,
pad_token_id=self.pad_token_id,
head_dim=self.head_dim,
)
def create_and_check_model(
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
):
model = self.model_class(config=config)
model.to(torch_device)
model.eval()
result = model(input_ids, attention_mask=input_mask)
result = model(input_ids)
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
def create_and_check_model_as_decoder(
self,
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
encoder_hidden_states,
encoder_attention_mask,
):
model = self.model_class(config)
model.to(torch_device)
model.eval()
result = model(
input_ids,
attention_mask=input_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
)
result = model(
input_ids,
attention_mask=input_mask,
encoder_hidden_states=encoder_hidden_states,
)
result = model(input_ids, attention_mask=input_mask)
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
def create_and_check_for_causal_lm(
self,
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
encoder_hidden_states,
encoder_attention_mask,
):
model = self.for_causal_lm_class(config=config)
model.to(torch_device)
model.eval()
result = model(input_ids, attention_mask=input_mask, labels=token_labels)
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size))
def create_and_check_decoder_model_past_large_inputs(
self,
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
encoder_hidden_states,
encoder_attention_mask,
):
model = self.for_causal_lm_class(config=config)
model.to(torch_device)
model.eval()
# first forward pass
outputs = model(
input_ids,
attention_mask=input_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
use_cache=True,
)
past_key_values = outputs.past_key_values
# create hypothetical multiple next token and extent to next_input_ids
next_tokens = ids_tensor((self.batch_size, 3), config.vocab_size)
next_mask = ids_tensor((self.batch_size, 3), vocab_size=2)
# append to next input_ids and
next_input_ids = torch.cat([input_ids, next_tokens], dim=-1)
next_attention_mask = torch.cat([input_mask, next_mask], dim=-1)
output_from_no_past = model(
next_input_ids,
attention_mask=next_attention_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
output_hidden_states=True,
)["hidden_states"][0]
output_from_past = model(
next_tokens,
attention_mask=next_attention_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
past_key_values=past_key_values,
output_hidden_states=True,
)["hidden_states"][0]
# select random slice
random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item()
output_from_no_past_slice = output_from_no_past[:, -3:, random_slice_idx].detach()
output_from_past_slice = output_from_past[:, :, random_slice_idx].detach()
self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1])
# test that outputs are equal for slice
self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3))
# Copied from tests.models.llama.test_modeling_llama.LlamaModelTester.prepare_config_and_inputs_for_common with Llama->Glm
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
(
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
) = config_and_inputs
inputs_dict = {"input_ids": input_ids, "attention_mask": input_mask}
return config, inputs_dict
@require_torch
class GlmModelTest(ModelTesterMixin, GenerationTesterMixin, PipelineTesterMixin, unittest.TestCase):
all_model_classes = (
(GlmModel, GlmForCausalLM, GlmForSequenceClassification, GlmForTokenClassification)
if is_torch_available()
else ()
)
all_generative_model_classes = (GlmForCausalLM,) if is_torch_available() else ()
pipeline_model_mapping = (
{
"feature-extraction": GlmModel,
"text-classification": GlmForSequenceClassification,
"token-classification": GlmForTokenClassification,
"text-generation": GlmForCausalLM,
}
if is_torch_available()
else {}
)
test_headmasking = False
test_pruning = False
def setUp(self):
self.model_tester = GlmModelTester(self)
self.config_tester = ConfigTester(self, config_class=GlmConfig, hidden_size=37)
def test_config(self):
self.config_tester.run_common_tests()
def test_model(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*config_and_inputs)
def test_model_various_embeddings(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
for type in ["absolute", "relative_key", "relative_key_query"]:
config_and_inputs[0].position_embedding_type = type
self.model_tester.create_and_check_model(*config_and_inputs)
def test_Glm_sequence_classification_model(self):
config, input_dict = self.model_tester.prepare_config_and_inputs_for_common()
print(config)
config.num_labels = 3
input_ids = input_dict["input_ids"]
attention_mask = input_ids.ne(1).to(torch_device)
sequence_labels = ids_tensor([self.model_tester.batch_size], self.model_tester.type_sequence_label_size)
model = self.model_tester.for_sequence_class(config)
model.to(torch_device)
model.eval()
result = model(input_ids, attention_mask=attention_mask, labels=sequence_labels)
self.assertEqual(result.logits.shape, (self.model_tester.batch_size, self.model_tester.num_labels))
def test_Glm_sequence_classification_model_for_single_label(self):
config, input_dict = self.model_tester.prepare_config_and_inputs_for_common()
config.num_labels = 3
config.problem_type = "single_label_classification"
input_ids = input_dict["input_ids"]
attention_mask = input_ids.ne(1).to(torch_device)
sequence_labels = ids_tensor([self.model_tester.batch_size], self.model_tester.type_sequence_label_size)
model = self.model_tester.for_sequence_class(config)
model.to(torch_device)
model.eval()
result = model(input_ids, attention_mask=attention_mask, labels=sequence_labels)
self.assertEqual(result.logits.shape, (self.model_tester.batch_size, self.model_tester.num_labels))
def test_Glm_sequence_classification_model_for_multi_label(self):
config, input_dict = self.model_tester.prepare_config_and_inputs_for_common()
config.num_labels = 3
config.problem_type = "multi_label_classification"
input_ids = input_dict["input_ids"]
attention_mask = input_ids.ne(1).to(torch_device)
sequence_labels = ids_tensor(
[self.model_tester.batch_size, config.num_labels], self.model_tester.type_sequence_label_size
).to(torch.float)
model = self.model_tester.for_sequence_class(config)
model.to(torch_device)
model.eval()
result = model(input_ids, attention_mask=attention_mask, labels=sequence_labels)
self.assertEqual(result.logits.shape, (self.model_tester.batch_size, self.model_tester.num_labels))
def test_Glm_token_classification_model(self):
config, input_dict = self.model_tester.prepare_config_and_inputs_for_common()
config.num_labels = 3
input_ids = input_dict["input_ids"]
attention_mask = input_ids.ne(1).to(torch_device)
token_labels = ids_tensor([self.model_tester.batch_size, self.model_tester.seq_length], config.num_labels)
model = self.model_tester.for_token_class(config=config)
model.to(torch_device)
model.eval()
result = model(input_ids, attention_mask=attention_mask, labels=token_labels)
self.assertEqual(
result.logits.shape,
(self.model_tester.batch_size, self.model_tester.seq_length, self.model_tester.num_labels),
)
@unittest.skip(reason="Glm uses GQA on all models so the KV cache is a non standard format")
def test_past_key_values_format(self):
pass
@is_flaky()
def test_custom_4d_attention_mask(self):
"""Overwrite the common test to use atol=1e-3 instead of 1e-4. Can still rarely fail, thus flaky."""
for model_class in self.all_generative_model_classes:
if not model_class._supports_static_cache:
self.skipTest(f"{model_class.__name__} is not guaranteed to work with custom 4D attention masks")
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
if getattr(config, "sliding_window", 0) is not None and getattr(config, "sliding_window", 0) > 0:
self.skipTest(f"{model_class.__name__} with sliding window attention is not supported by this test")
model = model_class(config).to(device=torch_device, dtype=torch.float32)
(
input_ids,
position_ids,
input_ids_shared_prefix,
mask_shared_prefix,
position_ids_shared_prefix,
) = self._get_custom_4d_mask_test_data()
logits = model.forward(input_ids, position_ids=position_ids).logits
# logits.shape == torch.Size([3, 4, ...])
logits_shared_prefix = model(
input_ids_shared_prefix,
attention_mask=mask_shared_prefix,
position_ids=position_ids_shared_prefix,
)[0]
# logits_shared_prefix.shape == torch.Size([1, 6, ...])
out_last_tokens = logits[:, -1, :] # last tokens in each batch line
out_shared_prefix_last_tokens = logits_shared_prefix[0, -3:, :] # last three tokens
# comparing softmax-normalized logits:
normalized_0 = torch.nn.functional.softmax(out_last_tokens)
normalized_1 = torch.nn.functional.softmax(out_shared_prefix_last_tokens)
print(torch.abs(normalized_0 - normalized_1).max())
torch.testing.assert_close(normalized_0, normalized_1, rtol=1e-3, atol=1e-3)
@slow
@require_torch_large_gpu
class GlmIntegrationTest(unittest.TestCase):
input_text = ["Hello I am doing", "Hi today"]
model_id = "THUDM/glm-4-9b"
revision = "refs/pr/15"
# This variable is used to determine which CUDA device are we using for our runners (A10 or T4)
# Depending on the hardware we get different logits / generations
cuda_compute_capability_major_version = None
@classmethod
def setUpClass(cls):
if is_torch_available() and torch.cuda.is_available():
# 8 is for A100 / A10 and 7 for T4
cls.cuda_compute_capability_major_version = torch.cuda.get_device_capability()[0]
def test_model_9b_fp16(self):
EXPECTED_TEXTS = [
"Hello I am doing a project on the history of the internetSolution:\n\nStep 1: Introduction\nThe history of the",
"Hi today I am going to show you how to make a simple and easy to make a DIY paper flower.",
]
model = AutoModelForCausalLM.from_pretrained(
self.model_id, low_cpu_mem_usage=True, torch_dtype=torch.float16, revision=self.revision
).to(torch_device)
tokenizer = AutoTokenizer.from_pretrained(self.model_id, revision=self.revision)
inputs = tokenizer(self.input_text, return_tensors="pt", padding=True).to(torch_device)
output = model.generate(**inputs, max_new_tokens=20, do_sample=False)
output_text = tokenizer.batch_decode(output, skip_special_tokens=True)
self.assertEqual(output_text, EXPECTED_TEXTS)
def test_model_9b_bf16(self):
EXPECTED_TEXTS = [
"Hello I am doing a project on the history of the internetSolution:\n\nStep 1: Introduction\nThe history of the",
"Hi today I am going to show you how to make a simple and easy to make a DIY paper flower.",
]
model = AutoModelForCausalLM.from_pretrained(
self.model_id, low_cpu_mem_usage=True, torch_dtype=torch.bfloat16, revision=self.revision
).to(torch_device)
tokenizer = AutoTokenizer.from_pretrained(self.model_id, revision=self.revision)
inputs = tokenizer(self.input_text, return_tensors="pt", padding=True).to(torch_device)
output = model.generate(**inputs, max_new_tokens=20, do_sample=False)
output_text = tokenizer.batch_decode(output, skip_special_tokens=True)
self.assertEqual(output_text, EXPECTED_TEXTS)
def test_model_9b_eager(self):
EXPECTED_TEXTS = [
"Hello I am doing a project on the history of the internetSolution:\n\nStep 1: Introduction\nThe history of the",
"Hi today I am going to show you how to make a simple and easy to make a DIY paper flower.",
]
model = AutoModelForCausalLM.from_pretrained(
self.model_id,
low_cpu_mem_usage=True,
torch_dtype=torch.bfloat16,
attn_implementation="eager",
revision=self.revision,
)
model.to(torch_device)
tokenizer = AutoTokenizer.from_pretrained(self.model_id, revision=self.revision)
inputs = tokenizer(self.input_text, return_tensors="pt", padding=True).to(torch_device)
output = model.generate(**inputs, max_new_tokens=20, do_sample=False)
output_text = tokenizer.batch_decode(output, skip_special_tokens=True)
self.assertEqual(output_text, EXPECTED_TEXTS)
@require_torch_sdpa
def test_model_9b_sdpa(self):
EXPECTED_TEXTS = [
"Hello I am doing a project on the history of the internetSolution:\n\nStep 1: Introduction\nThe history of the",
"Hi today I am going to show you how to make a simple and easy to make a DIY paper flower.",
]
model = AutoModelForCausalLM.from_pretrained(
self.model_id,
low_cpu_mem_usage=True,
torch_dtype=torch.bfloat16,
attn_implementation="sdpa",
revision=self.revision,
)
model.to(torch_device)
tokenizer = AutoTokenizer.from_pretrained(self.model_id, revision=self.revision)
inputs = tokenizer(self.input_text, return_tensors="pt", padding=True).to(torch_device)
output = model.generate(**inputs, max_new_tokens=20, do_sample=False)
output_text = tokenizer.batch_decode(output, skip_special_tokens=True)
self.assertEqual(output_text, EXPECTED_TEXTS)
@require_flash_attn
@pytest.mark.flash_attn_test
def test_model_9b_flash_attn(self):
EXPECTED_TEXTS = [
"Hello I am doing a project on the history of the internetSolution:\n\nStep 1: Introduction\nThe history of the",
"Hi today I am going to show you how to make a simple and easy to make a DIY paper flower.",
]
model = AutoModelForCausalLM.from_pretrained(
self.model_id,
low_cpu_mem_usage=True,
torch_dtype=torch.bfloat16,
attn_implementation="flash_attention_2",
revision=self.revision,
)
model.to(torch_device)
tokenizer = AutoTokenizer.from_pretrained(self.model_id, revision=self.revision)
inputs = tokenizer(self.input_text, return_tensors="pt", padding=True).to(torch_device)
output = model.generate(**inputs, max_new_tokens=20, do_sample=False)
output_text = tokenizer.batch_decode(output, skip_special_tokens=True)
self.assertEqual(output_text, EXPECTED_TEXTS)