mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-04 21:30:07 +06:00
334 lines
13 KiB
Python
334 lines
13 KiB
Python
# coding=utf-8
|
|
# Copyright 2020 HuggingFace Inc. team.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
|
|
import tempfile
|
|
import unittest
|
|
|
|
from transformers import is_torch_available
|
|
|
|
# TODO(PVP): this line reruns all the tests in BertModelTest; not sure whether this can be prevented
|
|
# for now only run module with pytest tests/test_modeling_encoder_decoder.py::EncoderDecoderModelTest
|
|
from .test_modeling_bert import BertModelTester
|
|
from .utils import require_torch, slow, torch_device
|
|
|
|
|
|
if is_torch_available():
|
|
from transformers import BertModel, BertForMaskedLM, EncoderDecoderModel
|
|
import numpy as np
|
|
import torch
|
|
|
|
|
|
@require_torch
|
|
class EncoderDecoderModelTest(unittest.TestCase):
|
|
def prepare_config_and_inputs_bert(self):
|
|
bert_model_tester = BertModelTester(self)
|
|
encoder_config_and_inputs = bert_model_tester.prepare_config_and_inputs()
|
|
decoder_config_and_inputs = bert_model_tester.prepare_config_and_inputs_for_decoder()
|
|
(
|
|
config,
|
|
input_ids,
|
|
token_type_ids,
|
|
input_mask,
|
|
sequence_labels,
|
|
token_labels,
|
|
choice_labels,
|
|
) = encoder_config_and_inputs
|
|
(
|
|
decoder_config,
|
|
decoder_input_ids,
|
|
decoder_token_type_ids,
|
|
decoder_input_mask,
|
|
decoder_sequence_labels,
|
|
decoder_token_labels,
|
|
decoder_choice_labels,
|
|
encoder_hidden_states,
|
|
encoder_attention_mask,
|
|
) = decoder_config_and_inputs
|
|
return {
|
|
"config": config,
|
|
"input_ids": input_ids,
|
|
"attention_mask": input_mask,
|
|
"decoder_config": decoder_config,
|
|
"decoder_input_ids": decoder_input_ids,
|
|
"decoder_token_type_ids": decoder_token_type_ids,
|
|
"decoder_attention_mask": decoder_input_mask,
|
|
"decoder_sequence_labels": decoder_sequence_labels,
|
|
"decoder_token_labels": decoder_token_labels,
|
|
"decoder_choice_labels": decoder_choice_labels,
|
|
"encoder_hidden_states": encoder_hidden_states,
|
|
"lm_labels": decoder_token_labels,
|
|
"masked_lm_labels": decoder_token_labels,
|
|
}
|
|
|
|
def create_and_check_bert_encoder_decoder_model(
|
|
self,
|
|
config,
|
|
input_ids,
|
|
attention_mask,
|
|
encoder_hidden_states,
|
|
decoder_config,
|
|
decoder_input_ids,
|
|
decoder_attention_mask,
|
|
**kwargs
|
|
):
|
|
encoder_model = BertModel(config)
|
|
decoder_model = BertForMaskedLM(decoder_config)
|
|
enc_dec_model = EncoderDecoderModel(encoder=encoder_model, decoder=decoder_model)
|
|
enc_dec_model.to(torch_device)
|
|
outputs_encoder_decoder = enc_dec_model(
|
|
input_ids=input_ids,
|
|
decoder_input_ids=decoder_input_ids,
|
|
attention_mask=attention_mask,
|
|
decoder_attention_mask=decoder_attention_mask,
|
|
)
|
|
|
|
self.assertEqual(outputs_encoder_decoder[0].shape, (decoder_input_ids.shape + (decoder_config.vocab_size,)))
|
|
self.assertEqual(outputs_encoder_decoder[1].shape, (input_ids.shape + (config.hidden_size,)))
|
|
encoder_outputs = (encoder_hidden_states,)
|
|
outputs_encoder_decoder = enc_dec_model(
|
|
encoder_outputs=encoder_outputs,
|
|
decoder_input_ids=decoder_input_ids,
|
|
attention_mask=attention_mask,
|
|
decoder_attention_mask=decoder_attention_mask,
|
|
)
|
|
|
|
self.assertEqual(outputs_encoder_decoder[0].shape, (decoder_input_ids.shape + (decoder_config.vocab_size,)))
|
|
self.assertEqual(outputs_encoder_decoder[1].shape, (input_ids.shape + (config.hidden_size,)))
|
|
|
|
def create_and_check_bert_encoder_decoder_model_from_pretrained(
|
|
self,
|
|
config,
|
|
input_ids,
|
|
attention_mask,
|
|
encoder_hidden_states,
|
|
decoder_config,
|
|
decoder_input_ids,
|
|
decoder_attention_mask,
|
|
**kwargs
|
|
):
|
|
encoder_model = BertModel(config)
|
|
decoder_model = BertForMaskedLM(decoder_config)
|
|
kwargs = {"encoder_model": encoder_model, "decoder_model": decoder_model}
|
|
enc_dec_model = EncoderDecoderModel.from_encoder_decoder_pretrained(**kwargs)
|
|
enc_dec_model.to(torch_device)
|
|
outputs_encoder_decoder = enc_dec_model(
|
|
input_ids=input_ids,
|
|
decoder_input_ids=decoder_input_ids,
|
|
attention_mask=attention_mask,
|
|
decoder_attention_mask=decoder_attention_mask,
|
|
)
|
|
|
|
self.assertEqual(outputs_encoder_decoder[0].shape, (decoder_input_ids.shape + (decoder_config.vocab_size,)))
|
|
self.assertEqual(outputs_encoder_decoder[1].shape, (input_ids.shape + (config.hidden_size,)))
|
|
|
|
def create_and_check_save_and_load(
|
|
self,
|
|
config,
|
|
input_ids,
|
|
attention_mask,
|
|
encoder_hidden_states,
|
|
decoder_config,
|
|
decoder_input_ids,
|
|
decoder_attention_mask,
|
|
**kwargs
|
|
):
|
|
encoder_model = BertModel(config)
|
|
decoder_model = BertForMaskedLM(decoder_config)
|
|
enc_dec_model = EncoderDecoderModel(encoder=encoder_model, decoder=decoder_model)
|
|
enc_dec_model.to(torch_device)
|
|
enc_dec_model.eval()
|
|
with torch.no_grad():
|
|
outputs = enc_dec_model(
|
|
input_ids=input_ids,
|
|
decoder_input_ids=decoder_input_ids,
|
|
attention_mask=attention_mask,
|
|
decoder_attention_mask=decoder_attention_mask,
|
|
)
|
|
out_2 = outputs[0].cpu().numpy()
|
|
out_2[np.isnan(out_2)] = 0
|
|
|
|
with tempfile.TemporaryDirectory() as tmpdirname:
|
|
enc_dec_model.save_pretrained(tmpdirname)
|
|
EncoderDecoderModel.from_pretrained(tmpdirname)
|
|
|
|
after_outputs = enc_dec_model(
|
|
input_ids=input_ids,
|
|
decoder_input_ids=decoder_input_ids,
|
|
attention_mask=attention_mask,
|
|
decoder_attention_mask=decoder_attention_mask,
|
|
)
|
|
out_1 = after_outputs[0].cpu().numpy()
|
|
out_1[np.isnan(out_1)] = 0
|
|
max_diff = np.amax(np.abs(out_1 - out_2))
|
|
self.assertLessEqual(max_diff, 1e-5)
|
|
|
|
def create_and_check_save_and_load_encoder_decoder_model(
|
|
self,
|
|
config,
|
|
input_ids,
|
|
attention_mask,
|
|
encoder_hidden_states,
|
|
decoder_config,
|
|
decoder_input_ids,
|
|
decoder_attention_mask,
|
|
**kwargs
|
|
):
|
|
encoder_model = BertModel(config)
|
|
decoder_model = BertForMaskedLM(decoder_config)
|
|
enc_dec_model = EncoderDecoderModel(encoder=encoder_model, decoder=decoder_model)
|
|
enc_dec_model.to(torch_device)
|
|
enc_dec_model.eval()
|
|
with torch.no_grad():
|
|
outputs = enc_dec_model(
|
|
input_ids=input_ids,
|
|
decoder_input_ids=decoder_input_ids,
|
|
attention_mask=attention_mask,
|
|
decoder_attention_mask=decoder_attention_mask,
|
|
)
|
|
out_2 = outputs[0].cpu().numpy()
|
|
out_2[np.isnan(out_2)] = 0
|
|
|
|
with tempfile.TemporaryDirectory() as encoder_tmp_dirname, tempfile.TemporaryDirectory() as decoder_tmp_dirname:
|
|
enc_dec_model.encoder.save_pretrained(encoder_tmp_dirname)
|
|
enc_dec_model.decoder.save_pretrained(decoder_tmp_dirname)
|
|
EncoderDecoderModel.from_encoder_decoder_pretrained(
|
|
encoder_pretrained_model_name_or_path=encoder_tmp_dirname,
|
|
decoder_pretrained_model_name_or_path=decoder_tmp_dirname,
|
|
)
|
|
|
|
after_outputs = enc_dec_model(
|
|
input_ids=input_ids,
|
|
decoder_input_ids=decoder_input_ids,
|
|
attention_mask=attention_mask,
|
|
decoder_attention_mask=decoder_attention_mask,
|
|
)
|
|
out_1 = after_outputs[0].cpu().numpy()
|
|
out_1[np.isnan(out_1)] = 0
|
|
max_diff = np.amax(np.abs(out_1 - out_2))
|
|
self.assertLessEqual(max_diff, 1e-5)
|
|
|
|
def check_loss_output(self, loss):
|
|
self.assertEqual(loss.size(), ())
|
|
|
|
def create_and_check_bert_encoder_decoder_model_mlm_labels(
|
|
self,
|
|
config,
|
|
input_ids,
|
|
attention_mask,
|
|
encoder_hidden_states,
|
|
decoder_config,
|
|
decoder_input_ids,
|
|
decoder_attention_mask,
|
|
masked_lm_labels,
|
|
**kwargs
|
|
):
|
|
encoder_model = BertModel(config)
|
|
decoder_model = BertForMaskedLM(decoder_config)
|
|
enc_dec_model = EncoderDecoderModel(encoder=encoder_model, decoder=decoder_model)
|
|
enc_dec_model.to(torch_device)
|
|
outputs_encoder_decoder = enc_dec_model(
|
|
input_ids=input_ids,
|
|
decoder_input_ids=decoder_input_ids,
|
|
attention_mask=attention_mask,
|
|
decoder_attention_mask=decoder_attention_mask,
|
|
masked_lm_labels=masked_lm_labels,
|
|
)
|
|
|
|
mlm_loss = outputs_encoder_decoder[0]
|
|
self.check_loss_output(mlm_loss)
|
|
# check that backprop works
|
|
mlm_loss.backward()
|
|
|
|
self.assertEqual(outputs_encoder_decoder[1].shape, (decoder_input_ids.shape + (decoder_config.vocab_size,)))
|
|
self.assertEqual(outputs_encoder_decoder[2].shape, (input_ids.shape + (config.hidden_size,)))
|
|
|
|
def create_and_check_bert_encoder_decoder_model_lm_labels(
|
|
self,
|
|
config,
|
|
input_ids,
|
|
attention_mask,
|
|
encoder_hidden_states,
|
|
decoder_config,
|
|
decoder_input_ids,
|
|
decoder_attention_mask,
|
|
lm_labels,
|
|
**kwargs
|
|
):
|
|
encoder_model = BertModel(config)
|
|
decoder_model = BertForMaskedLM(decoder_config)
|
|
enc_dec_model = EncoderDecoderModel(encoder=encoder_model, decoder=decoder_model)
|
|
enc_dec_model.to(torch_device)
|
|
outputs_encoder_decoder = enc_dec_model(
|
|
input_ids=input_ids,
|
|
decoder_input_ids=decoder_input_ids,
|
|
attention_mask=attention_mask,
|
|
decoder_attention_mask=decoder_attention_mask,
|
|
lm_labels=lm_labels,
|
|
)
|
|
|
|
lm_loss = outputs_encoder_decoder[0]
|
|
self.check_loss_output(lm_loss)
|
|
# check that backprop works
|
|
lm_loss.backward()
|
|
|
|
self.assertEqual(outputs_encoder_decoder[1].shape, (decoder_input_ids.shape + (decoder_config.vocab_size,)))
|
|
self.assertEqual(outputs_encoder_decoder[2].shape, (input_ids.shape + (config.hidden_size,)))
|
|
|
|
def create_and_check_bert_encoder_decoder_model_generate(self, input_ids, config, decoder_config, **kwargs):
|
|
encoder_model = BertModel(config)
|
|
decoder_model = BertForMaskedLM(decoder_config)
|
|
enc_dec_model = EncoderDecoderModel(encoder=encoder_model, decoder=decoder_model)
|
|
enc_dec_model.to(torch_device)
|
|
|
|
# Bert does not have a bos token id, so use pad_token_id instead
|
|
generated_output = enc_dec_model.generate(
|
|
input_ids, decoder_start_token_id=enc_dec_model.config.decoder.pad_token_id
|
|
)
|
|
self.assertEqual(generated_output.shape, (input_ids.shape[0],) + (decoder_config.max_length,))
|
|
|
|
def test_bert_encoder_decoder_model(self):
|
|
input_ids_dict = self.prepare_config_and_inputs_bert()
|
|
self.create_and_check_bert_encoder_decoder_model(**input_ids_dict)
|
|
|
|
def test_bert_encoder_decoder_model_from_pretrained(self):
|
|
input_ids_dict = self.prepare_config_and_inputs_bert()
|
|
self.create_and_check_bert_encoder_decoder_model_from_pretrained(**input_ids_dict)
|
|
|
|
def test_save_and_load_from_pretrained(self):
|
|
input_ids_dict = self.prepare_config_and_inputs_bert()
|
|
self.create_and_check_save_and_load(**input_ids_dict)
|
|
|
|
def test_save_and_load_from_encoder_decoder_pretrained(self):
|
|
input_ids_dict = self.prepare_config_and_inputs_bert()
|
|
self.create_and_check_save_and_load_encoder_decoder_model(**input_ids_dict)
|
|
|
|
def test_bert_encoder_decoder_model_mlm_labels(self):
|
|
input_ids_dict = self.prepare_config_and_inputs_bert()
|
|
self.create_and_check_bert_encoder_decoder_model_mlm_labels(**input_ids_dict)
|
|
|
|
def test_bert_encoder_decoder_model_lm_labels(self):
|
|
input_ids_dict = self.prepare_config_and_inputs_bert()
|
|
self.create_and_check_bert_encoder_decoder_model_lm_labels(**input_ids_dict)
|
|
|
|
def test_bert_encoder_decoder_model_generate(self):
|
|
input_ids_dict = self.prepare_config_and_inputs_bert()
|
|
self.create_and_check_bert_encoder_decoder_model_generate(**input_ids_dict)
|
|
|
|
@slow
|
|
def test_real_bert_model_from_pretrained(self):
|
|
model = EncoderDecoderModel.from_encoder_decoder_pretrained("bert-base-uncased", "bert-base-uncased")
|
|
self.assertIsNotNone(model)
|