mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-07 14:50:07 +06:00

* Docs * Inits * Auto classes * Add siglip base * Add base tests * Fix Siglip V1 for fix res version * Add image processor * Update conversion * Experimenting with vectorized embeddings * Fixup * Add modular Siglip2Processor * Add modular configuration * Rename num patches * Correct image and text features merging * Working conversion script * Refactoring conversion script * Remove unused code in conversion script * Shorten dict a bit * Refactoring conversion * Done conversion refactoring * Fixup * Modular siglip2 * Make model exportable and compilable without graph breaks * Remove position_ids from image_processor * REmove position ids from modeling file * Update modular * Type hint * Fixup * Set defaults to processor * Add integration test * Revert spatial shapes back to tensor * Change order * Fix most of the tests * Fix docstring * Remove interpolate_pos_encoding arg (not needed) * Update docs * Standardize processing * Fix attention_mask in vision head * Siglip v1: remove double transpose in FA2 * Update modular file * Update FA2 test * Update expected logits * Fix interpolation for siglip2 image processor * Skip init test * Skip dispatch on flash test * Fix modeling tests * Fixup * Add dummy objects * Fix some docstrings * Add siglip2 in index.md * Fix consistency * Add docs * Remove size and data format * Add image processor tests * Fix * Add fast image processor * Fix style * Fix * Docs * Set lowercase for tokenizer * Adjust head size for Siglip v1 * Update siglip2 for consistency with siglip1 * Update siglip2 conversion * Update pipeline * Update checkpoints in tests * Update checkpoint name * Fix pooling for image classification model * Fix FA2 test * Update processor * Fix check repo * Update docs * Fix typos * Fix docstring for fast image processor * Add siglip2 to FA2 docs * Fix fast ip tests * Fix constitency * Fix tokenizer class for siglip v1 * Fix missing header * Refactor scaling for clip, siglip, siglip2 * Remove unused imports * Make fast IP default for siglip2 * Update docs * Update checkpoints * Update modular * Update paper link * Fixup * Fix name in toctree * Fix test
990 lines
39 KiB
Python
990 lines
39 KiB
Python
# coding=utf-8
|
|
# Copyright 2025 The HuggingFace Inc. team. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""Testing suite for the PyTorch Siglip2 model."""
|
|
|
|
import inspect
|
|
import tempfile
|
|
import unittest
|
|
from typing import Tuple
|
|
|
|
import numpy as np
|
|
from parameterized import parameterized
|
|
from pytest import mark
|
|
|
|
from transformers import Siglip2Config, Siglip2TextConfig, Siglip2VisionConfig
|
|
from transformers.testing_utils import (
|
|
require_flash_attn,
|
|
require_torch,
|
|
require_torch_gpu,
|
|
require_torch_sdpa,
|
|
require_vision,
|
|
slow,
|
|
torch_device,
|
|
)
|
|
from transformers.utils import (
|
|
is_torch_available,
|
|
is_torch_bf16_available_on_device,
|
|
is_torch_fp16_available_on_device,
|
|
is_torch_sdpa_available,
|
|
is_vision_available,
|
|
)
|
|
|
|
from ...test_configuration_common import ConfigTester
|
|
from ...test_modeling_common import (
|
|
ModelTesterMixin,
|
|
floats_tensor,
|
|
ids_tensor,
|
|
is_flaky,
|
|
random_attention_mask,
|
|
)
|
|
from ...test_pipeline_mixin import PipelineTesterMixin
|
|
|
|
|
|
if is_torch_available():
|
|
import torch
|
|
from torch import nn
|
|
|
|
from transformers import Siglip2ForImageClassification, Siglip2Model, Siglip2TextModel, Siglip2VisionModel
|
|
|
|
if is_torch_sdpa_available():
|
|
from torch.nn.attention import SDPBackend, sdpa_kernel
|
|
|
|
if is_vision_available():
|
|
from PIL import Image, ImageDraw
|
|
|
|
from transformers import Siglip2Processor
|
|
|
|
|
|
class Siglip2ModelTesterMixin(ModelTesterMixin):
|
|
def test_sdpa_can_dispatch_composite_models(self):
|
|
for model_class in self.all_model_classes:
|
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
|
|
model = model_class(config)
|
|
|
|
with tempfile.TemporaryDirectory() as tmpdirname:
|
|
model.save_pretrained(tmpdirname)
|
|
|
|
# Load the model with SDPA
|
|
model_sdpa = model_class.from_pretrained(tmpdirname)
|
|
model_sdpa = model_sdpa.eval().to(torch_device)
|
|
|
|
# Load model with eager attention
|
|
model_eager = model_class.from_pretrained(
|
|
tmpdirname,
|
|
attn_implementation="eager",
|
|
)
|
|
model_eager = model_eager.eval().to(torch_device)
|
|
|
|
# SigLip has one shared cls attr for all models, so we assign both submodels heer
|
|
vision_attn = text_attn = "sdpa" if model._supports_sdpa else "eager"
|
|
|
|
if hasattr(model_sdpa, "vision_model") and hasattr(model_sdpa, "text_model"):
|
|
self.assertTrue(model_sdpa.vision_model.config._attn_implementation == vision_attn)
|
|
self.assertTrue(model_sdpa.text_model.config._attn_implementation == text_attn)
|
|
self.assertTrue(model_eager.vision_model.config._attn_implementation == "eager")
|
|
self.assertTrue(model_eager.text_model.config._attn_implementation == "eager")
|
|
|
|
self.assertTrue(model_sdpa.config._attn_implementation == "sdpa")
|
|
self.assertTrue(model_eager.config._attn_implementation == "eager")
|
|
|
|
for name, submodule in model_eager.named_modules():
|
|
class_name = submodule.__class__.__name__
|
|
if "SdpaAttention" in class_name or "SdpaSelfAttention" in class_name:
|
|
raise ValueError("The eager model should not have SDPA attention layers")
|
|
|
|
has_sdpa = False
|
|
for name, submodule in model_sdpa.named_modules():
|
|
class_name = submodule.__class__.__name__
|
|
if "SdpaAttention" in class_name or "SdpaSelfAttention" in class_name:
|
|
has_sdpa = True
|
|
break
|
|
if not has_sdpa and model_sdpa.config.model_type != "falcon":
|
|
raise ValueError("The SDPA model should have SDPA attention layers")
|
|
|
|
def test_eager_matches_sdpa_inference(
|
|
self,
|
|
torch_dtype: str,
|
|
use_attention_mask_options: Tuple[bool, ...] = (True, False),
|
|
logit_keys: Tuple[str, ...] = ("logits_per_image", "logits_per_text", "image_embeds", "text_embeds"),
|
|
):
|
|
if not self.all_model_classes[0]._supports_sdpa:
|
|
self.skipTest(f"{self.all_model_classes[0].__name__} does not support SDPA")
|
|
|
|
if torch_dtype == "float16" and not is_torch_fp16_available_on_device(torch_device):
|
|
self.skipTest(f"float16 not supported on {torch_device} (on the specific device currently used)")
|
|
|
|
if torch_dtype == "bfloat16" and not is_torch_bf16_available_on_device(torch_device):
|
|
self.skipTest(
|
|
f"bfloat16 not supported on {torch_device} (on the specific device currently used, e.g. Nvidia T4 GPU)"
|
|
)
|
|
|
|
# Convert to torch dtype
|
|
dtypes = {
|
|
"float16": torch.float16,
|
|
"bfloat16": torch.bfloat16,
|
|
"float32": torch.float32,
|
|
}
|
|
torch_dtype = dtypes[torch_dtype]
|
|
|
|
atols = {
|
|
torch.float32: 1e-5,
|
|
torch.bfloat16: 3e-2,
|
|
torch.float16: 5e-3,
|
|
}
|
|
rtols = {
|
|
torch.float32: 1e-4,
|
|
torch.bfloat16: 3e-2,
|
|
torch.float16: 5e-3,
|
|
}
|
|
|
|
atol = atols[torch_dtype]
|
|
rtol = rtols[torch_dtype]
|
|
|
|
def get_mean_reldiff(msg, current_case, x, ref, atol, rtol):
|
|
return f"{msg} {current_case}: mean relative difference: {((x - ref).abs() / (ref.abs() + 1e-12)).mean():.3e}, torch atol = {atol}, torch rtol = {rtol}"
|
|
|
|
for model_class in self.all_model_classes:
|
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
|
|
model = model_class(config)
|
|
|
|
with tempfile.TemporaryDirectory() as tmpdirname:
|
|
model.save_pretrained(tmpdirname)
|
|
|
|
# Load the model with SDPA
|
|
model_sdpa = model_class.from_pretrained(tmpdirname, torch_dtype=torch_dtype)
|
|
model_sdpa = model_sdpa.eval().to(torch_device)
|
|
|
|
# Load model with eager attention
|
|
model_eager = model_class.from_pretrained(
|
|
tmpdirname,
|
|
torch_dtype=torch_dtype,
|
|
attn_implementation="eager",
|
|
)
|
|
model_eager = model_eager.eval().to(torch_device)
|
|
|
|
# We use these for loops instead of parameterized.expand just for the interest of avoiding loading/saving the model each time,
|
|
# but it would be nicer to have an efficient way to use parameterized.expand
|
|
cases = [
|
|
(use_mask, output_attentions, sdpa_backend, batch_size)
|
|
for use_mask in use_attention_mask_options
|
|
for output_attentions in [True, False]
|
|
for sdpa_backend in [
|
|
SDPBackend.MATH,
|
|
[SDPBackend.FLASH_ATTENTION, SDPBackend.MATH],
|
|
[SDPBackend.EFFICIENT_ATTENTION, SDPBackend.MATH],
|
|
[SDPBackend.FLASH_ATTENTION, SDPBackend.EFFICIENT_ATTENTION, SDPBackend.MATH],
|
|
]
|
|
for batch_size in [1, 5]
|
|
]
|
|
fail_cases = []
|
|
|
|
for use_mask, output_attentions, sdpa_backend, batch_size in cases:
|
|
processed_inputs = inputs_dict.copy()
|
|
|
|
# convert to torch_dtype
|
|
if "pixel_values" in processed_inputs:
|
|
processed_inputs["pixel_values"] = processed_inputs["pixel_values"].to(torch_dtype)
|
|
|
|
# slice for different batch sizes
|
|
for key in processed_inputs.keys():
|
|
if isinstance(processed_inputs[key], (torch.Tensor, list, tuple)):
|
|
processed_inputs[key] = processed_inputs[key][:batch_size]
|
|
|
|
# set attention mask with left padding
|
|
if not use_mask:
|
|
processed_inputs.pop("attention_mask", None)
|
|
else:
|
|
dummy_attention_mask = processed_inputs["attention_mask"]
|
|
dummy_attention_mask[:] = 1
|
|
dummy_attention_mask[:, :1] = 0
|
|
processed_inputs["attention_mask"] = dummy_attention_mask
|
|
|
|
processed_inputs["output_attentions"] = output_attentions
|
|
processed_inputs["output_hidden_states"] = True
|
|
|
|
current_case = (
|
|
f"padding_side=left, use_mask={use_mask}, batch_size={batch_size}, sdpa_backend={sdpa_backend}"
|
|
)
|
|
|
|
prepared_inputs = self._prepare_for_class(processed_inputs, model_class)
|
|
|
|
with torch.no_grad():
|
|
try:
|
|
with sdpa_kernel(sdpa_backend):
|
|
outputs_eager = model_eager(**prepared_inputs)
|
|
outputs_sdpa = model_sdpa(**prepared_inputs)
|
|
except Exception as e:
|
|
fail_cases.append(f"{current_case}: {e}")
|
|
continue
|
|
|
|
for key in logit_keys:
|
|
eager_logits = outputs_eager[key]
|
|
sdpa_logits = outputs_sdpa[key]
|
|
|
|
if use_mask:
|
|
eager_logits = eager_logits[:, 1:]
|
|
sdpa_logits = sdpa_logits[:, 1:]
|
|
|
|
is_close = torch.allclose(eager_logits, sdpa_logits, atol=atol, rtol=rtol)
|
|
if not is_close:
|
|
fail_cases.append(get_mean_reldiff(key, current_case, sdpa_logits, eager_logits, atol, rtol))
|
|
|
|
self.assertTrue(len(fail_cases) == 0, "\n".join(fail_cases))
|
|
|
|
@require_flash_attn
|
|
@require_torch_gpu
|
|
@mark.flash_attn_test
|
|
@slow
|
|
def test_flash_attn_2_inference_equivalence(self):
|
|
dtype = torch.float16
|
|
|
|
for model_class in self.all_model_classes:
|
|
if not model_class._supports_flash_attn_2:
|
|
self.skipTest(f"{model_class.__name__} does not support Flash Attention 2")
|
|
|
|
# Prepare inputs
|
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
|
|
if "pixel_values" in inputs_dict:
|
|
inputs_dict["pixel_values"] = inputs_dict["pixel_values"].to(dtype)
|
|
|
|
# Separate masks
|
|
attention_masks = {}
|
|
if "attention_mask" in inputs_dict:
|
|
# attention_masks["attention_mask"] = inputs_dict.pop("attention_mask")
|
|
inputs_dict["attention_mask"] = None
|
|
if "pixel_attention_mask" in inputs_dict:
|
|
attention_masks["pixel_attention_mask"] = inputs_dict.pop("pixel_attention_mask")
|
|
inputs_dict["pixel_attention_mask"] = None
|
|
|
|
# Save and load model with flash attention 2 and eager attentions
|
|
with tempfile.TemporaryDirectory() as tmp_dir:
|
|
model = model_class(config)
|
|
model.save_pretrained(tmp_dir)
|
|
|
|
model = model_class.from_pretrained(tmp_dir, torch_dtype=dtype)
|
|
model_fa = model_class.from_pretrained(
|
|
tmp_dir, torch_dtype=dtype, attn_implementation="flash_attention_2"
|
|
)
|
|
|
|
model_fa.to(torch_device)
|
|
model.to(torch_device)
|
|
|
|
# Run forward pass without attention masks
|
|
with torch.no_grad():
|
|
outputs = model(**inputs_dict, output_hidden_states=True)
|
|
outputs_fa = model_fa(**inputs_dict, output_hidden_states=True)
|
|
|
|
# Choose which key to compare
|
|
key = [k for k in ["logits", "logits_per_image", "last_hidden_state"] if k in outputs][0]
|
|
|
|
torch.testing.assert_close(outputs[key], outputs_fa[key], atol=4e-2, rtol=4e-2)
|
|
|
|
# Run forward pass with attention masks
|
|
inputs_dict.update(attention_masks)
|
|
with torch.no_grad():
|
|
outputs = model(**inputs_dict, output_hidden_states=True)
|
|
outputs_fa = model_fa(**inputs_dict, output_hidden_states=True)
|
|
|
|
output_tensor = outputs[key]
|
|
output_tensor_fa = outputs_fa[key]
|
|
|
|
# Mask out padded tokens, they are different for SDPA and Flash Attention 2
|
|
if key == "last_hidden_state" and "pixel_attention_mask" in inputs_dict:
|
|
output_tensor = output_tensor * inputs_dict["pixel_attention_mask"][..., None]
|
|
output_tensor_fa = output_tensor_fa * inputs_dict["pixel_attention_mask"][..., None]
|
|
elif key == "last_hidden_state" and inputs_dict.get("attention_mask", None) is not None:
|
|
output_tensor = output_tensor * inputs_dict["attention_mask"][..., None]
|
|
output_tensor_fa = output_tensor_fa * inputs_dict["attention_mask"][..., None]
|
|
|
|
torch.testing.assert_close(output_tensor, output_tensor_fa, atol=4e-2, rtol=4e-2)
|
|
|
|
# Check with inference + dropout
|
|
model.train()
|
|
_ = model_fa(**inputs_dict, output_hidden_states=True)
|
|
|
|
@unittest.skip(reason="Siglip2 has default right padding (tested in test_flash_attn_2_inference_equivalence)")
|
|
def test_flash_attn_2_inference_equivalence_right_padding(self):
|
|
pass
|
|
|
|
@unittest.skip(reason="SDPA can't dispatch on flash with not None `attention_mask`")
|
|
def test_sdpa_can_dispatch_on_flash(self):
|
|
pass
|
|
|
|
|
|
class Siglip2VisionModelTester:
|
|
def __init__(
|
|
self,
|
|
parent,
|
|
batch_size=12,
|
|
num_patches=16,
|
|
image_num_patches=24,
|
|
patch_size=2,
|
|
num_channels=3,
|
|
is_training=True,
|
|
hidden_size=32,
|
|
num_hidden_layers=2,
|
|
num_attention_heads=4,
|
|
intermediate_size=37,
|
|
dropout=0.1,
|
|
attention_dropout=0.1,
|
|
initializer_range=0.02,
|
|
scope=None,
|
|
):
|
|
self.parent = parent
|
|
self.batch_size = batch_size
|
|
self.num_patches = num_patches
|
|
self.patch_size = patch_size
|
|
self.num_channels = num_channels
|
|
self.is_training = is_training
|
|
self.hidden_size = hidden_size
|
|
self.num_hidden_layers = num_hidden_layers
|
|
self.num_attention_heads = num_attention_heads
|
|
self.intermediate_size = intermediate_size
|
|
self.dropout = dropout
|
|
self.attention_dropout = attention_dropout
|
|
self.initializer_range = initializer_range
|
|
self.scope = scope
|
|
self.seq_length = image_num_patches
|
|
|
|
def prepare_config_and_inputs(self):
|
|
pixel_values = floats_tensor(
|
|
[self.batch_size, self.seq_length, self.num_channels * self.patch_size * self.patch_size]
|
|
)
|
|
pixel_attention_mask = torch.zeros(self.batch_size, self.seq_length, device=torch_device, dtype=torch.long)
|
|
|
|
spatial_shapes = [
|
|
(height, width)
|
|
for height in range(1, self.seq_length)
|
|
for width in range(1, self.seq_length)
|
|
if height * width <= self.seq_length
|
|
] * self.batch_size
|
|
spatial_shapes = spatial_shapes[: self.batch_size]
|
|
spatial_shapes = torch.tensor(spatial_shapes, device=torch_device, dtype=torch.long)
|
|
|
|
for i, (height, width) in enumerate(spatial_shapes):
|
|
pixel_attention_mask[i, : height * width] = 1
|
|
|
|
config = self.get_config()
|
|
|
|
return config, pixel_values, pixel_attention_mask, spatial_shapes
|
|
|
|
def get_config(self):
|
|
return Siglip2VisionConfig(
|
|
num_patches=self.num_patches,
|
|
patch_size=self.patch_size,
|
|
num_channels=self.num_channels,
|
|
hidden_size=self.hidden_size,
|
|
num_hidden_layers=self.num_hidden_layers,
|
|
num_attention_heads=self.num_attention_heads,
|
|
intermediate_size=self.intermediate_size,
|
|
dropout=self.dropout,
|
|
attention_dropout=self.attention_dropout,
|
|
initializer_range=self.initializer_range,
|
|
)
|
|
|
|
def create_and_check_model(self, config, pixel_values, pixel_attention_mask, spatial_shapes):
|
|
model = Siglip2VisionModel(config=config)
|
|
model.to(torch_device)
|
|
model.eval()
|
|
with torch.no_grad():
|
|
result = model(pixel_values, pixel_attention_mask, spatial_shapes)
|
|
|
|
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
|
|
self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size))
|
|
|
|
def prepare_config_and_inputs_for_common(self):
|
|
config, pixel_values, pixel_attention_mask, spatial_shapes = self.prepare_config_and_inputs()
|
|
inputs_dict = {
|
|
"pixel_values": pixel_values,
|
|
"pixel_attention_mask": pixel_attention_mask,
|
|
"spatial_shapes": spatial_shapes,
|
|
}
|
|
return config, inputs_dict
|
|
|
|
|
|
@require_torch
|
|
class Siglip2VisionModelTest(Siglip2ModelTesterMixin, unittest.TestCase):
|
|
"""
|
|
Here we also overwrite some of the tests of test_modeling_common.py, as SIGLIP2 does not use input_ids, inputs_embeds,
|
|
attention_mask and seq_length.
|
|
"""
|
|
|
|
all_model_classes = (Siglip2VisionModel,) if is_torch_available() else ()
|
|
fx_compatible = False
|
|
test_pruning = False
|
|
test_resize_embeddings = False
|
|
test_head_masking = False
|
|
# MP works but offload doesn't work when the MultiheadAttention is offloaded
|
|
# TODO: One potential solution would be to add to set preload_module_classes = ["Siglip2MultiheadAttentionPoolingHead"]
|
|
# in the dispatch_model function
|
|
test_cpu_offload = False
|
|
test_disk_offload_safetensors = False
|
|
test_disk_offload_bin = False
|
|
|
|
def setUp(self):
|
|
self.model_tester = Siglip2VisionModelTester(self)
|
|
self.config_tester = ConfigTester(
|
|
self, config_class=Siglip2VisionConfig, has_text_modality=False, hidden_size=37
|
|
)
|
|
|
|
def test_config(self):
|
|
self.config_tester.run_common_tests()
|
|
|
|
@unittest.skip(reason="SIGLIP2 does not use inputs_embeds")
|
|
def test_inputs_embeds(self):
|
|
pass
|
|
|
|
def test_model_get_set_embeddings(self):
|
|
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
|
|
|
|
for model_class in self.all_model_classes:
|
|
model = model_class(config)
|
|
self.assertIsInstance(model.get_input_embeddings(), (nn.Module))
|
|
x = model.get_output_embeddings()
|
|
self.assertTrue(x is None or isinstance(x, nn.Linear))
|
|
|
|
def test_forward_signature(self):
|
|
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
|
|
|
|
for model_class in self.all_model_classes:
|
|
model = model_class(config)
|
|
signature = inspect.signature(model.forward)
|
|
# signature.parameters is an OrderedDict => so arg_names order is deterministic
|
|
arg_names = [*signature.parameters.keys()]
|
|
|
|
expected_arg_names = ["pixel_values"]
|
|
self.assertListEqual(arg_names[:1], expected_arg_names)
|
|
|
|
def test_model(self):
|
|
config_and_inputs = self.model_tester.prepare_config_and_inputs()
|
|
self.model_tester.create_and_check_model(*config_and_inputs)
|
|
|
|
@unittest.skip(reason="Siglip2VisionModel does not support standalone training")
|
|
def test_training(self):
|
|
pass
|
|
|
|
@unittest.skip(reason="Siglip2VisionModel does not support standalone training")
|
|
def test_training_gradient_checkpointing(self):
|
|
pass
|
|
|
|
@unittest.skip(reason="Siglip2VisionModel does not support standalone training")
|
|
def test_training_gradient_checkpointing_use_reentrant(self):
|
|
pass
|
|
|
|
@unittest.skip(reason="Siglip2VisionModel does not support standalone training")
|
|
def test_training_gradient_checkpointing_use_reentrant_false(self):
|
|
pass
|
|
|
|
@unittest.skip(reason="Siglip2VisionModel has no base class and is not available in MODEL_MAPPING")
|
|
def test_save_load_fast_init_from_base(self):
|
|
pass
|
|
|
|
@unittest.skip(reason="Siglip2VisionModel has no base class and is not available in MODEL_MAPPING")
|
|
def test_save_load_fast_init_to_base(self):
|
|
pass
|
|
|
|
@unittest.skip(reason="Siglip2 uses the same initialization scheme as the Flax original implementation")
|
|
def test_initialization(self):
|
|
pass
|
|
|
|
@slow
|
|
def test_model_from_pretrained(self):
|
|
model_name = "google/siglip2-base-patch16-naflex"
|
|
model = Siglip2VisionModel.from_pretrained(model_name)
|
|
self.assertIsNotNone(model)
|
|
|
|
@parameterized.expand([("float16",), ("bfloat16",), ("float32",)])
|
|
@require_torch_sdpa
|
|
@slow
|
|
@is_flaky()
|
|
def test_eager_matches_sdpa_inference(self, torch_dtype: str):
|
|
super().test_eager_matches_sdpa_inference(
|
|
torch_dtype=torch_dtype,
|
|
logit_keys=("pooler_output", "last_hidden_state"),
|
|
use_attention_mask_options=(False,),
|
|
)
|
|
|
|
@require_torch_sdpa
|
|
def test_sdpa_can_dispatch_composite_models(self):
|
|
super().test_sdpa_can_dispatch_composite_models()
|
|
|
|
|
|
class Siglip2TextModelTester:
|
|
def __init__(
|
|
self,
|
|
parent,
|
|
batch_size=12,
|
|
seq_length=7,
|
|
is_training=True,
|
|
use_input_mask=True,
|
|
use_labels=True,
|
|
vocab_size=99,
|
|
hidden_size=32,
|
|
num_hidden_layers=2,
|
|
num_attention_heads=4,
|
|
intermediate_size=37,
|
|
dropout=0.1,
|
|
attention_dropout=0.1,
|
|
max_position_embeddings=512,
|
|
initializer_range=0.02,
|
|
scope=None,
|
|
):
|
|
self.parent = parent
|
|
self.batch_size = batch_size
|
|
self.seq_length = seq_length
|
|
self.is_training = is_training
|
|
self.use_input_mask = use_input_mask
|
|
self.use_labels = use_labels
|
|
self.vocab_size = vocab_size
|
|
self.hidden_size = hidden_size
|
|
self.num_hidden_layers = num_hidden_layers
|
|
self.num_attention_heads = num_attention_heads
|
|
self.intermediate_size = intermediate_size
|
|
self.dropout = dropout
|
|
self.attention_dropout = attention_dropout
|
|
self.max_position_embeddings = max_position_embeddings
|
|
self.initializer_range = initializer_range
|
|
self.scope = scope
|
|
|
|
def prepare_config_and_inputs(self):
|
|
input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
|
|
|
|
input_mask = None
|
|
if self.use_input_mask:
|
|
input_mask = random_attention_mask([self.batch_size, self.seq_length])
|
|
|
|
if input_mask is not None:
|
|
batch_size, seq_length = input_mask.shape
|
|
rnd_start_indices = np.random.randint(1, seq_length - 1, size=(batch_size,))
|
|
for batch_idx, start_index in enumerate(rnd_start_indices):
|
|
input_mask[batch_idx, :start_index] = 1
|
|
input_mask[batch_idx, start_index:] = 0
|
|
|
|
config = self.get_config()
|
|
|
|
return config, input_ids, input_mask
|
|
|
|
def get_config(self):
|
|
return Siglip2TextConfig(
|
|
vocab_size=self.vocab_size,
|
|
hidden_size=self.hidden_size,
|
|
num_hidden_layers=self.num_hidden_layers,
|
|
num_attention_heads=self.num_attention_heads,
|
|
intermediate_size=self.intermediate_size,
|
|
dropout=self.dropout,
|
|
attention_dropout=self.attention_dropout,
|
|
max_position_embeddings=self.max_position_embeddings,
|
|
initializer_range=self.initializer_range,
|
|
)
|
|
|
|
def create_and_check_model(self, config, input_ids, input_mask):
|
|
model = Siglip2TextModel(config=config)
|
|
model.to(torch_device)
|
|
model.eval()
|
|
with torch.no_grad():
|
|
result = model(input_ids, attention_mask=input_mask)
|
|
result = model(input_ids)
|
|
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
|
|
self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size))
|
|
|
|
def prepare_config_and_inputs_for_common(self):
|
|
config_and_inputs = self.prepare_config_and_inputs()
|
|
config, input_ids, input_mask = config_and_inputs
|
|
inputs_dict = {"input_ids": input_ids, "attention_mask": input_mask}
|
|
return config, inputs_dict
|
|
|
|
|
|
@require_torch
|
|
class Siglip2TextModelTest(Siglip2ModelTesterMixin, unittest.TestCase):
|
|
all_model_classes = (Siglip2TextModel,) if is_torch_available() else ()
|
|
fx_compatible = False
|
|
test_resize_embeddings = False
|
|
test_pruning = False
|
|
test_head_masking = False
|
|
model_split_percents = [0.5, 0.8, 0.9]
|
|
|
|
def setUp(self):
|
|
self.model_tester = Siglip2TextModelTester(self)
|
|
self.config_tester = ConfigTester(self, config_class=Siglip2TextConfig, hidden_size=37)
|
|
|
|
def test_config(self):
|
|
self.config_tester.run_common_tests()
|
|
|
|
def test_model(self):
|
|
config_and_inputs = self.model_tester.prepare_config_and_inputs()
|
|
self.model_tester.create_and_check_model(*config_and_inputs)
|
|
|
|
@unittest.skip(reason="Siglip2TextModel does not support standalone training")
|
|
def test_training(self):
|
|
pass
|
|
|
|
@unittest.skip(reason="Siglip2TextModel does not support standalone training")
|
|
def test_training_gradient_checkpointing(self):
|
|
pass
|
|
|
|
@unittest.skip(reason="Siglip2TextModel does not support standalone training")
|
|
def test_training_gradient_checkpointing_use_reentrant(self):
|
|
pass
|
|
|
|
@unittest.skip(reason="Siglip2TextModel does not support standalone training")
|
|
def test_training_gradient_checkpointing_use_reentrant_false(self):
|
|
pass
|
|
|
|
@unittest.skip(reason="Siglip2 does not use inputs_embeds")
|
|
def test_inputs_embeds(self):
|
|
pass
|
|
|
|
@unittest.skip(reason="Siglip2TextModel has no base class and is not available in MODEL_MAPPING")
|
|
def test_save_load_fast_init_from_base(self):
|
|
pass
|
|
|
|
@unittest.skip(reason="Siglip2TextModel has no base class and is not available in MODEL_MAPPING")
|
|
def test_save_load_fast_init_to_base(self):
|
|
pass
|
|
|
|
@unittest.skip(reason="Siglip2 uses the same initialization scheme as the Flax original implementation")
|
|
def test_initialization(self):
|
|
pass
|
|
|
|
@slow
|
|
def test_model_from_pretrained(self):
|
|
model_name = "google/siglip2-base-patch16-naflex"
|
|
model = Siglip2TextModel.from_pretrained(model_name)
|
|
self.assertIsNotNone(model)
|
|
|
|
@parameterized.expand([("float16",), ("bfloat16",), ("float32",)])
|
|
@require_torch_sdpa
|
|
@slow
|
|
@is_flaky()
|
|
def test_eager_matches_sdpa_inference(self, torch_dtype: str):
|
|
super().test_eager_matches_sdpa_inference(
|
|
torch_dtype=torch_dtype,
|
|
logit_keys=("pooler_output", "last_hidden_state"),
|
|
use_attention_mask_options=(False, True),
|
|
)
|
|
|
|
@require_torch_sdpa
|
|
def test_sdpa_can_dispatch_composite_models(self):
|
|
super().test_sdpa_can_dispatch_composite_models()
|
|
|
|
|
|
class Siglip2ModelTester:
|
|
def __init__(self, parent, text_kwargs=None, vision_kwargs=None, is_training=True):
|
|
if text_kwargs is None:
|
|
text_kwargs = {}
|
|
if vision_kwargs is None:
|
|
vision_kwargs = {}
|
|
|
|
self.parent = parent
|
|
self.text_model_tester = Siglip2TextModelTester(parent, **text_kwargs)
|
|
self.vision_model_tester = Siglip2VisionModelTester(parent, **vision_kwargs)
|
|
self.batch_size = self.text_model_tester.batch_size # need bs for batching_equivalence test
|
|
self.is_training = is_training
|
|
|
|
def prepare_config_and_inputs(self):
|
|
text_config, input_ids, attention_mask = self.text_model_tester.prepare_config_and_inputs()
|
|
vision_config, pixel_values, pixel_attention_mask, spatial_shapes = (
|
|
self.vision_model_tester.prepare_config_and_inputs()
|
|
)
|
|
|
|
config = self.get_config()
|
|
|
|
return config, input_ids, attention_mask, pixel_values, pixel_attention_mask, spatial_shapes
|
|
|
|
def get_config(self):
|
|
return Siglip2Config.from_text_vision_configs(
|
|
self.text_model_tester.get_config(),
|
|
self.vision_model_tester.get_config(),
|
|
)
|
|
|
|
def create_and_check_model(
|
|
self, config, input_ids, attention_mask, pixel_values, pixel_attention_mask, spatial_shapes
|
|
):
|
|
model = Siglip2Model(config).to(torch_device).eval()
|
|
with torch.no_grad():
|
|
result = model(input_ids, pixel_values, pixel_attention_mask, spatial_shapes, attention_mask)
|
|
self.parent.assertEqual(
|
|
result.logits_per_image.shape, (self.vision_model_tester.batch_size, self.text_model_tester.batch_size)
|
|
)
|
|
self.parent.assertEqual(
|
|
result.logits_per_text.shape, (self.text_model_tester.batch_size, self.vision_model_tester.batch_size)
|
|
)
|
|
|
|
def prepare_config_and_inputs_for_common(self):
|
|
config_and_inputs = self.prepare_config_and_inputs()
|
|
config, input_ids, attention_mask, pixel_values, pixel_attention_mask, spatial_shapes = config_and_inputs
|
|
inputs_dict = {
|
|
"input_ids": input_ids,
|
|
"pixel_values": pixel_values,
|
|
"pixel_attention_mask": pixel_attention_mask,
|
|
"spatial_shapes": spatial_shapes,
|
|
"attention_mask": attention_mask,
|
|
"position_ids": None,
|
|
"return_loss": False,
|
|
}
|
|
return config, inputs_dict
|
|
|
|
|
|
@require_torch
|
|
class Siglip2ModelTest(Siglip2ModelTesterMixin, PipelineTesterMixin, unittest.TestCase):
|
|
all_model_classes = (Siglip2Model,) if is_torch_available() else ()
|
|
pipeline_model_mapping = {"feature-extraction": Siglip2Model} if is_torch_available() else {}
|
|
fx_compatible = False
|
|
test_head_masking = False
|
|
test_pruning = False
|
|
test_resize_embeddings = False
|
|
test_attention_outputs = False
|
|
# MP works but offload doesn't work when the MultiheadAttention is offloaded
|
|
# TODO: One potential solution would be to add to set preload_module_classes = ["Siglip2MultiheadAttentionPoolingHead"]
|
|
# in the dispatch_model function
|
|
test_cpu_offload = False
|
|
test_disk_offload_safetensors = False
|
|
test_disk_offload_bin = False
|
|
_is_composite = True
|
|
|
|
def setUp(self):
|
|
self.model_tester = Siglip2ModelTester(self)
|
|
self.config_tester = ConfigTester(self, config_class=Siglip2Config, has_text_modality=False)
|
|
|
|
def test_config(self):
|
|
self.config_tester.run_common_tests()
|
|
|
|
def test_model(self):
|
|
config_and_inputs = self.model_tester.prepare_config_and_inputs()
|
|
self.model_tester.create_and_check_model(*config_and_inputs)
|
|
|
|
@unittest.skip(reason="Hidden_states is tested in individual model tests")
|
|
def test_hidden_states_output(self):
|
|
pass
|
|
|
|
@unittest.skip(reason="Inputs_embeds is tested in individual model tests")
|
|
def test_inputs_embeds(self):
|
|
pass
|
|
|
|
@unittest.skip(reason="Retain_grad is tested in individual model tests")
|
|
def test_retain_grad_hidden_states_attentions(self):
|
|
pass
|
|
|
|
@unittest.skip(reason="Siglip2Model does not have input/output embeddings")
|
|
def test_model_get_set_embeddings(self):
|
|
pass
|
|
|
|
@unittest.skip(reason="Siglip2 uses the same initialization scheme as the Flax original implementation")
|
|
def test_initialization(self):
|
|
pass
|
|
|
|
def test_load_vision_text_config(self):
|
|
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
|
|
|
|
# Save Siglip2Config and check if we can load Siglip2VisionConfig from it
|
|
with tempfile.TemporaryDirectory() as tmp_dir_name:
|
|
config.save_pretrained(tmp_dir_name)
|
|
vision_config = Siglip2VisionConfig.from_pretrained(tmp_dir_name)
|
|
self.assertDictEqual(config.vision_config.to_dict(), vision_config.to_dict())
|
|
|
|
# Save Siglip2Config and check if we can load Siglip2TextConfig from it
|
|
with tempfile.TemporaryDirectory() as tmp_dir_name:
|
|
config.save_pretrained(tmp_dir_name)
|
|
text_config = Siglip2TextConfig.from_pretrained(tmp_dir_name)
|
|
self.assertDictEqual(config.text_config.to_dict(), text_config.to_dict())
|
|
|
|
@slow
|
|
def test_model_from_pretrained(self):
|
|
model_name = "google/siglip2-base-patch16-naflex"
|
|
model = Siglip2Model.from_pretrained(model_name)
|
|
self.assertIsNotNone(model)
|
|
|
|
@require_flash_attn
|
|
@require_torch_gpu
|
|
@mark.flash_attn_test
|
|
def test_flash_attn_2_inference_equivalence_right_padding(self):
|
|
self.skipTest("Siglip2 does not support right padding")
|
|
|
|
@parameterized.expand([("float16",), ("bfloat16",), ("float32",)])
|
|
@require_torch_sdpa
|
|
@slow
|
|
@is_flaky()
|
|
def test_eager_matches_sdpa_inference(self, torch_dtype: str):
|
|
super().test_eager_matches_sdpa_inference(
|
|
torch_dtype=torch_dtype,
|
|
logit_keys=("logits_per_image", "logits_per_text", "image_embeds", "text_embeds"),
|
|
use_attention_mask_options=(False, True),
|
|
)
|
|
|
|
@require_torch_sdpa
|
|
def test_sdpa_can_dispatch_composite_models(self):
|
|
super().test_sdpa_can_dispatch_composite_models()
|
|
|
|
|
|
class Siglip2ForImageClassificationModelTester(Siglip2ModelTester):
|
|
def __init__(self, parent):
|
|
super().__init__(parent)
|
|
self.batch_size = self.vision_model_tester.batch_size
|
|
self.num_hidden_layers = self.vision_model_tester.num_hidden_layers
|
|
self.hidden_size = self.vision_model_tester.hidden_size
|
|
self.seq_length = self.vision_model_tester.seq_length
|
|
|
|
def prepare_config_and_inputs(self):
|
|
_, pixel_values, pixel_attention_mask, spatial_shapes = self.vision_model_tester.prepare_config_and_inputs()
|
|
config = self.get_config()
|
|
|
|
return config, pixel_values, pixel_attention_mask, spatial_shapes
|
|
|
|
def prepare_config_and_inputs_for_common(self):
|
|
config_and_inputs = self.prepare_config_and_inputs()
|
|
config, pixel_values, pixel_attention_mask, spatial_shapes = config_and_inputs
|
|
inputs_dict = {
|
|
"pixel_values": pixel_values,
|
|
"pixel_attention_mask": pixel_attention_mask,
|
|
"spatial_shapes": spatial_shapes,
|
|
}
|
|
return config, inputs_dict
|
|
|
|
|
|
@require_torch
|
|
class Siglip2ForImageClassificationModelTest(Siglip2ModelTesterMixin, PipelineTesterMixin, unittest.TestCase):
|
|
all_model_classes = (Siglip2ForImageClassification,) if is_torch_available() else ()
|
|
pipeline_model_mapping = {"image-classification": Siglip2ForImageClassification} if is_torch_available() else {}
|
|
fx_compatible = False
|
|
test_head_masking = False
|
|
test_pruning = False
|
|
test_resize_embeddings = False
|
|
test_attention_outputs = False
|
|
# MP works but offload doesn't work when the MultiheadAttention is offloaded
|
|
# TODO: One potential solution would be to add to set preload_module_classes = ["Siglip2MultiheadAttentionPoolingHead"]
|
|
# in the dispatch_model function
|
|
test_cpu_offload = False
|
|
test_disk_offload_safetensors = False
|
|
test_disk_offload_bin = False
|
|
_is_composite = True
|
|
|
|
def setUp(self):
|
|
self.model_tester = Siglip2ForImageClassificationModelTester(self)
|
|
|
|
@unittest.skip(reason="Siglip2ForImageClassification does not support inputs_embeds")
|
|
def test_inputs_embeds(self):
|
|
pass
|
|
|
|
@unittest.skip(reason="Siglip2ForImageClassification does not support inputs_embeds")
|
|
def test_model_get_set_embeddings(self):
|
|
pass
|
|
|
|
@unittest.skip(reason="Siglip2ForImageClassification does not support gradient checkpointing yet")
|
|
def test_training_gradient_checkpointing(self):
|
|
pass
|
|
|
|
@unittest.skip(reason="Siglip2ForImageClassification does not support gradient checkpointing yet")
|
|
def test_training_gradient_checkpointing_use_reentrant(self):
|
|
pass
|
|
|
|
@unittest.skip(reason="Siglip2ForImageClassification does not support gradient checkpointing yet")
|
|
def test_training_gradient_checkpointing_use_reentrant_false(self):
|
|
pass
|
|
|
|
@unittest.skip(reason="Siglip2 uses the same initialization scheme as the Flax original implementation")
|
|
def test_initialization(self):
|
|
pass
|
|
|
|
@parameterized.expand([("float16",), ("bfloat16",), ("float32",)])
|
|
@require_torch_sdpa
|
|
@slow
|
|
@is_flaky()
|
|
def test_eager_matches_sdpa_inference(self, torch_dtype: str):
|
|
super().test_eager_matches_sdpa_inference(
|
|
torch_dtype=torch_dtype, logit_keys=("logits",), use_attention_mask_options=(False,)
|
|
)
|
|
|
|
@require_torch_sdpa
|
|
def test_sdpa_can_dispatch_composite_models(self):
|
|
super().test_sdpa_can_dispatch_composite_models()
|
|
|
|
|
|
# Draw a circle on an images with different aspect ratios
|
|
def prepare_images():
|
|
shapes = [(224, 224), (1024, 1024), (224, 1024)]
|
|
images = []
|
|
for height, width in shapes:
|
|
image = Image.new("RGB", (width, height), color="red")
|
|
draw = ImageDraw.Draw(image)
|
|
center_x = image.width // 2
|
|
center_y = image.height // 2
|
|
radius = min(center_x, center_y) // 8 * 7
|
|
draw.ellipse(
|
|
(center_x - radius, center_y - radius, center_x + radius, center_y + radius),
|
|
fill="blue",
|
|
outline="green",
|
|
width=image.width // 20,
|
|
)
|
|
images.append(image)
|
|
return images
|
|
|
|
|
|
@require_vision
|
|
@require_torch
|
|
class Siglip2ModelIntegrationTest(unittest.TestCase):
|
|
@slow
|
|
def test_inference(self):
|
|
model_name = "google/siglip2-base-patch16-naflex"
|
|
model = Siglip2Model.from_pretrained(model_name).to(torch_device)
|
|
processor = Siglip2Processor.from_pretrained(model_name)
|
|
|
|
images = prepare_images()
|
|
text = [
|
|
"circle",
|
|
"ellipsoid",
|
|
"blue circle on red background",
|
|
"blue circle with green border on red background",
|
|
"green circle on red background",
|
|
"a dog",
|
|
"a blue dog with a green border on a red background",
|
|
]
|
|
|
|
inputs = processor(text=text, images=images, return_tensors="pt")
|
|
inputs = inputs.to(torch_device)
|
|
|
|
# forward pass
|
|
with torch.no_grad():
|
|
outputs = model(**inputs)
|
|
|
|
logits_per_image = outputs.logits_per_image
|
|
logits_per_text = outputs.logits_per_text
|
|
|
|
# verify the logits shape
|
|
self.assertEqual(
|
|
logits_per_image.shape,
|
|
torch.Size((inputs.pixel_values.shape[0], inputs.input_ids.shape[0])),
|
|
)
|
|
self.assertEqual(
|
|
logits_per_text.shape,
|
|
torch.Size((inputs.input_ids.shape[0], inputs.pixel_values.shape[0])),
|
|
)
|
|
|
|
# verify the logits values
|
|
# fmt: off
|
|
expected_logits_per_text = torch.tensor(
|
|
[
|
|
[ 1.0195, -0.0280, -1.4468],
|
|
[ -4.5395, -6.2269, -1.5667],
|
|
[ 4.1757, 5.0358, 3.5159],
|
|
[ 9.4264, 10.1879, 6.3353],
|
|
[ 2.4409, 3.1058, 4.5491],
|
|
[-12.3230, -13.7355, -13.4632],
|
|
[ 1.1520, 1.1687, -1.9647],
|
|
]
|
|
).to(torch_device)
|
|
# fmt: on
|
|
|
|
torch.testing.assert_close(outputs.logits_per_text, expected_logits_per_text, rtol=1e-3, atol=1e-3)
|