transformers/tests/models/vitmatte/test_image_processing_vitmatte.py
Henrik Matthiesen a847d4aa6b
Fast image processor for VitMatte added and bug in slow version fixed (#37616)
* added fast image processor for VitMatte including updated and new tests, fixed a bug in the slow image processor that processed images incorrectly for input format ChannelDimension.FIRST in which case the trimaps were not added in the correct dimension, this bug was also reflected in the tests through incorretly shaped trimaps being passed

* final edits for fast vitmatte image processor and tests

* final edits for fast vitmatte image processor and tests

---------

Co-authored-by: Yoni Gozlan <74535834+yonigozlan@users.noreply.github.com>
2025-04-28 14:51:50 -04:00

337 lines
16 KiB
Python

# Copyright 2023 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import time
import unittest
import warnings
import numpy as np
import requests
from transformers.testing_utils import is_flaky, require_torch, require_vision
from transformers.utils import is_torch_available, is_torchvision_available, is_vision_available
from ...test_image_processing_common import ImageProcessingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import VitMatteImageProcessor
if is_torchvision_available():
from transformers import VitMatteImageProcessorFast
class VitMatteImageProcessingTester:
def __init__(
self,
parent,
batch_size=7,
num_channels=3,
image_size=18,
min_resolution=30,
max_resolution=400,
do_rescale=True,
rescale_factor=0.5,
do_pad=True,
size_divisibility=10,
do_normalize=True,
image_mean=[0.5, 0.5, 0.5],
image_std=[0.5, 0.5, 0.5],
):
self.parent = parent
self.batch_size = batch_size
self.num_channels = num_channels
self.image_size = image_size
self.min_resolution = min_resolution
self.max_resolution = max_resolution
self.do_rescale = do_rescale
self.rescale_factor = rescale_factor
self.do_pad = do_pad
self.size_divisibility = size_divisibility
self.do_normalize = do_normalize
self.image_mean = image_mean
self.image_std = image_std
def prepare_image_processor_dict(self):
return {
"image_mean": self.image_mean,
"image_std": self.image_std,
"do_normalize": self.do_normalize,
"do_rescale": self.do_rescale,
"rescale_factor": self.rescale_factor,
"do_pad": self.do_pad,
"size_divisibility": self.size_divisibility,
}
def prepare_image_inputs(self, equal_resolution=False, numpify=False, torchify=False):
return prepare_image_inputs(
batch_size=self.batch_size,
num_channels=self.num_channels,
min_resolution=self.min_resolution,
max_resolution=self.max_resolution,
equal_resolution=equal_resolution,
numpify=numpify,
torchify=torchify,
)
@require_torch
@require_vision
class VitMatteImageProcessingTest(ImageProcessingTestMixin, unittest.TestCase):
image_processing_class = VitMatteImageProcessor if is_vision_available() else None
fast_image_processing_class = VitMatteImageProcessorFast if is_torchvision_available() else None
def setUp(self):
super().setUp()
self.image_processor_tester = VitMatteImageProcessingTester(self)
@property
def image_processor_dict(self):
return self.image_processor_tester.prepare_image_processor_dict()
def test_image_processor_properties(self):
for image_processing_class in self.image_processor_list:
image_processing = image_processing_class(**self.image_processor_dict)
self.assertTrue(hasattr(image_processing, "image_mean"))
self.assertTrue(hasattr(image_processing, "image_std"))
self.assertTrue(hasattr(image_processing, "do_normalize"))
self.assertTrue(hasattr(image_processing, "do_rescale"))
self.assertTrue(hasattr(image_processing, "rescale_factor"))
self.assertTrue(hasattr(image_processing, "do_pad"))
self.assertTrue(hasattr(image_processing, "size_divisibility"))
def test_call_numpy(self):
# create random numpy tensors
image_inputs = self.image_processor_tester.prepare_image_inputs(equal_resolution=False, numpify=True)
for image in image_inputs:
self.assertIsInstance(image, np.ndarray)
# Test not batched input (image processor does not support batched inputs)
image = image_inputs[0]
trimap = np.random.randint(0, 3, size=image.shape[:2])
for image_processing_class in self.image_processor_list:
image_processing = image_processing_class(**self.image_processor_dict)
encoded_images = image_processing(images=image, trimaps=trimap, return_tensors="pt").pixel_values
# Verify that width and height can be divided by size_divisibility and that correct dimensions got merged
self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisibility == 0)
self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisibility == 0)
self.assertTrue(encoded_images.shape[-3] == 4)
def test_call_pytorch(self):
# create random PyTorch tensors
image_inputs = self.image_processor_tester.prepare_image_inputs(equal_resolution=False, torchify=True)
for image in image_inputs:
self.assertIsInstance(image, torch.Tensor)
# Test not batched input (image processor does not support batched inputs)
image = image_inputs[0]
trimap = np.random.randint(0, 3, size=image.shape[1:])
for image_processing_class in self.image_processor_list:
image_processing = image_processing_class(**self.image_processor_dict)
encoded_images = image_processing(images=image, trimaps=trimap, return_tensors="pt").pixel_values
# Verify that width and height can be divided by size_divisibility and that correct dimensions got merged
self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisibility == 0)
self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisibility == 0)
self.assertTrue(encoded_images.shape[-3] == 4)
# create batched tensors
image_inputs = self.image_processor_tester.prepare_image_inputs(equal_resolution=True, torchify=True)
image_input = torch.stack(image_inputs, dim=0)
self.assertIsInstance(image_input, torch.Tensor)
self.assertTrue(image_input.shape[1] == 3)
trimap_shape = [image_input.shape[0]] + [1] + list(image_input.shape)[2:]
trimap_input = torch.randint(0, 3, trimap_shape, dtype=torch.uint8)
self.assertIsInstance(trimap_input, torch.Tensor)
self.assertTrue(trimap_input.shape[1] == 1)
for image_processing_class in self.image_processor_list:
image_processing = image_processing_class(**self.image_processor_dict)
encoded_images = image_processing(images=image, trimaps=trimap, return_tensors="pt").pixel_values
# Verify that width and height can be divided by size_divisibility and that correct dimensions got merged
self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisibility == 0)
self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisibility == 0)
self.assertTrue(encoded_images.shape[-3] == 4)
def test_call_pil(self):
# create random PIL images
image_inputs = self.image_processor_tester.prepare_image_inputs(equal_resolution=False)
for image in image_inputs:
self.assertIsInstance(image, Image.Image)
# Test not batched input (image processor does not support batched inputs)
image = image_inputs[0]
trimap = np.random.randint(0, 3, size=image.size[::-1])
for image_processing_class in self.image_processor_list:
image_processing = image_processing_class(**self.image_processor_dict)
encoded_images = image_processing(images=image, trimaps=trimap, return_tensors="pt").pixel_values
# Verify that width and height can be divided by size_divisibility and that correct dimensions got merged
self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisibility == 0)
self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisibility == 0)
self.assertTrue(encoded_images.shape[-3] == 4)
def test_call_numpy_4_channels(self):
# Test that can process images which have an arbitrary number of channels
# create random numpy tensors
self.image_processor_tester.num_channels = 4
image_inputs = self.image_processor_tester.prepare_image_inputs(equal_resolution=False, numpify=True)
# Test not batched input (image processor does not support batched inputs)
image = image_inputs[0]
trimap = np.random.randint(0, 3, size=image.shape[:2])
for image_processing_class in self.image_processor_list:
image_processor = image_processing_class(**self.image_processor_dict)
encoded_images = image_processor(
images=image,
trimaps=trimap,
input_data_format="channels_last",
image_mean=0,
image_std=1,
return_tensors="pt",
).pixel_values
# Verify that width and height can be divided by size_divisibility and that correct dimensions got merged
self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisibility == 0)
self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisibility == 0)
self.assertTrue(encoded_images.shape[-3] == 5)
def test_padding_slow(self):
image_processing = self.image_processing_class(**self.image_processor_dict)
image = np.random.randn(3, 249, 491)
images = image_processing.pad_image(image)
assert images.shape == (3, 256, 512)
image = np.random.randn(3, 249, 512)
images = image_processing.pad_image(image)
assert images.shape == (3, 256, 512)
def test_padding_fast(self):
# extra test because name is different for fast image processor
image_processing = self.fast_image_processing_class(**self.image_processor_dict)
image = torch.rand(3, 249, 491)
images = image_processing._pad_image(image)
assert images.shape == (3, 256, 512)
image = torch.rand(3, 249, 512)
images = image_processing._pad_image(image)
assert images.shape == (3, 256, 512)
def test_image_processor_preprocess_arguments(self):
# vitmatte require additional trimap input for image_processor
# that is why we override original common test
for image_processing_class in self.image_processor_list:
image_processor = image_processing_class(**self.image_processor_dict)
image = self.image_processor_tester.prepare_image_inputs()[0]
trimap = np.random.randint(0, 3, size=image.size[::-1])
with warnings.catch_warnings(record=True) as raised_warnings:
warnings.simplefilter("always")
image_processor(image, trimaps=trimap, extra_argument=True)
messages = " ".join([str(w.message) for w in raised_warnings])
self.assertGreaterEqual(len(raised_warnings), 1)
self.assertIn("extra_argument", messages)
@is_flaky()
def test_fast_is_faster_than_slow(self):
if not self.test_slow_image_processor or not self.test_fast_image_processor:
self.skipTest(reason="Skipping speed test")
if self.image_processing_class is None or self.fast_image_processing_class is None:
self.skipTest(reason="Skipping speed test as one of the image processors is not defined")
def measure_time(image_processor, images, trimaps):
# Warmup
for _ in range(5):
_ = image_processor(images, trimaps=trimaps, return_tensors="pt")
all_times = []
for _ in range(10):
start = time.time()
_ = image_processor(images, trimaps=trimaps, return_tensors="pt")
all_times.append(time.time() - start)
# Take the average of the fastest 3 runs
avg_time = sum(sorted(all_times[:3])) / 3.0
return avg_time
dummy_images = torch.randint(0, 255, (4, 3, 400, 800), dtype=torch.uint8)
dummy_trimaps = torch.randint(0, 3, (4, 400, 800), dtype=torch.uint8)
image_processor_slow = self.image_processing_class(**self.image_processor_dict)
image_processor_fast = self.fast_image_processing_class(**self.image_processor_dict)
fast_time = measure_time(image_processor_fast, dummy_images, dummy_trimaps)
slow_time = measure_time(image_processor_slow, dummy_images, dummy_trimaps)
self.assertLessEqual(fast_time, slow_time)
def test_slow_fast_equivalence(self):
if not self.test_slow_image_processor or not self.test_fast_image_processor:
self.skipTest(reason="Skipping slow/fast equivalence test")
if self.image_processing_class is None or self.fast_image_processing_class is None:
self.skipTest(reason="Skipping slow/fast equivalence test as one of the image processors is not defined")
dummy_image = Image.open(
requests.get("http://images.cocodataset.org/val2017/000000039769.jpg", stream=True).raw
)
dummy_trimap = np.random.randint(0, 3, size=dummy_image.size[::-1])
image_processor_slow = self.image_processing_class(**self.image_processor_dict)
image_processor_fast = self.fast_image_processing_class(**self.image_processor_dict)
encoding_slow = image_processor_slow(dummy_image, trimaps=dummy_trimap, return_tensors="pt")
encoding_fast = image_processor_fast(dummy_image, trimaps=dummy_trimap, return_tensors="pt")
self.assertTrue(torch.allclose(encoding_slow.pixel_values, encoding_fast.pixel_values, atol=1e-1))
self.assertLessEqual(
torch.mean(torch.abs(encoding_slow.pixel_values - encoding_fast.pixel_values)).item(), 1e-3
)
def test_slow_fast_equivalence_batched(self):
# this only checks on equal resolution, since the slow processor doesn't work otherwise
if not self.test_slow_image_processor or not self.test_fast_image_processor:
self.skipTest(reason="Skipping slow/fast equivalence test")
if self.image_processing_class is None or self.fast_image_processing_class is None:
self.skipTest(reason="Skipping slow/fast equivalence test as one of the image processors is not defined")
if hasattr(self.image_processor_tester, "do_center_crop") and self.image_processor_tester.do_center_crop:
self.skipTest(
reason="Skipping as do_center_crop is True and center_crop functions are not equivalent for fast and slow processors"
)
dummy_images = self.image_processor_tester.prepare_image_inputs(equal_resolution=True, torchify=True)
dummy_trimaps = [np.random.randint(0, 3, size=image.shape[1:]) for image in dummy_images]
image_processor_slow = self.image_processing_class(**self.image_processor_dict)
image_processor_fast = self.fast_image_processing_class(**self.image_processor_dict)
encoding_slow = image_processor_slow(dummy_images, trimaps=dummy_trimaps, return_tensors="pt")
encoding_fast = image_processor_fast(dummy_images, trimaps=dummy_trimaps, return_tensors="pt")
self.assertTrue(torch.allclose(encoding_slow.pixel_values, encoding_fast.pixel_values, atol=1e-1))
self.assertLessEqual(
torch.mean(torch.abs(encoding_slow.pixel_values - encoding_fast.pixel_values)).item(), 1e-3
)