mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-25 15:28:59 +06:00

* add changed
* Revert "add changed"
This reverts commit 0a0166a1fe
.
* update with NEW MODEL class called GLM4
* update
* Update glm4.md
* Name
* style
* fix copies
* fixup test
---------
Co-authored-by: Yuxuan Zhang <2448370773@qq.com>
206 lines
7.8 KiB
Python
206 lines
7.8 KiB
Python
# coding=utf-8
|
|
# Copyright 2025 The HuggingFace Inc. team. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""Testing suite for the PyTorch Glm4 model."""
|
|
|
|
import unittest
|
|
|
|
import pytest
|
|
|
|
from transformers import AutoModelForCausalLM, AutoTokenizer, Glm4Config, is_torch_available
|
|
from transformers.testing_utils import (
|
|
require_flash_attn,
|
|
require_torch,
|
|
require_torch_large_gpu,
|
|
require_torch_sdpa,
|
|
slow,
|
|
torch_device,
|
|
)
|
|
|
|
from ...models.gemma.test_modeling_gemma import GemmaModelTest, GemmaModelTester
|
|
from ...test_configuration_common import ConfigTester
|
|
|
|
|
|
if is_torch_available():
|
|
import torch
|
|
|
|
from transformers import (
|
|
Glm4ForCausalLM,
|
|
Glm4ForSequenceClassification,
|
|
Glm4ForTokenClassification,
|
|
Glm4Model,
|
|
)
|
|
|
|
|
|
class Glm4ModelTester(GemmaModelTester):
|
|
if is_torch_available():
|
|
config_class = Glm4Config
|
|
model_class = Glm4Model
|
|
for_causal_lm_class = Glm4ForCausalLM
|
|
for_sequence_class = Glm4ForSequenceClassification
|
|
for_token_class = Glm4ForTokenClassification
|
|
|
|
|
|
@require_torch
|
|
class Glm4ModelTest(GemmaModelTest, unittest.TestCase):
|
|
all_model_classes = (
|
|
(Glm4Model, Glm4ForCausalLM, Glm4ForSequenceClassification, Glm4ForTokenClassification)
|
|
if is_torch_available()
|
|
else ()
|
|
)
|
|
pipeline_model_mapping = (
|
|
{
|
|
"feature-extraction": Glm4Model,
|
|
"text-classification": Glm4ForSequenceClassification,
|
|
"token-classification": Glm4ForTokenClassification,
|
|
"text-generation": Glm4ForCausalLM,
|
|
"zero-shot": Glm4ForSequenceClassification,
|
|
}
|
|
if is_torch_available()
|
|
else {}
|
|
)
|
|
test_headmasking = False
|
|
test_pruning = False
|
|
_is_stateful = True
|
|
model_split_percents = [0.5, 0.6]
|
|
|
|
def setUp(self):
|
|
self.model_tester = Glm4ModelTester(self)
|
|
self.config_tester = ConfigTester(self, config_class=Glm4Config, hidden_size=37)
|
|
|
|
|
|
@slow
|
|
@require_torch_large_gpu
|
|
class Glm4IntegrationTest(unittest.TestCase):
|
|
input_text = ["Hello I am doing", "Hi today"]
|
|
model_id = "THUDM/glm-4-0414-9b-chat"
|
|
revision = "refs/pr/15"
|
|
# This variable is used to determine which CUDA device are we using for our runners (A10 or T4)
|
|
# Depending on the hardware we get different logits / generations
|
|
cuda_compute_capability_major_version = None
|
|
|
|
@classmethod
|
|
def setUpClass(cls):
|
|
if is_torch_available() and torch.cuda.is_available():
|
|
# 8 is for A100 / A10 and 7 for T4
|
|
cls.cuda_compute_capability_major_version = torch.cuda.get_device_capability()[0]
|
|
|
|
def test_model_9b_fp16(self):
|
|
EXPECTED_TEXTS = [
|
|
"Hello I am doing a project on the history of the internetSolution:\n\nStep 1: Introduction\nThe history of the",
|
|
"Hi today I am going to show you how to make a simple and easy to make a DIY paper flower.",
|
|
]
|
|
|
|
model = AutoModelForCausalLM.from_pretrained(
|
|
self.model_id, low_cpu_mem_usage=True, torch_dtype=torch.float16, revision=self.revision
|
|
).to(torch_device)
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained(self.model_id, revision=self.revision)
|
|
inputs = tokenizer(self.input_text, return_tensors="pt", padding=True).to(torch_device)
|
|
|
|
output = model.generate(**inputs, max_new_tokens=20, do_sample=False)
|
|
output_text = tokenizer.batch_decode(output, skip_special_tokens=True)
|
|
|
|
self.assertEqual(output_text, EXPECTED_TEXTS)
|
|
|
|
def test_model_9b_bf16(self):
|
|
EXPECTED_TEXTS = [
|
|
"Hello I am doing a project on the history of the internetSolution:\n\nStep 1: Introduction\nThe history of the",
|
|
"Hi today I am going to show you how to make a simple and easy to make a DIY paper flower.",
|
|
]
|
|
|
|
model = AutoModelForCausalLM.from_pretrained(
|
|
self.model_id, low_cpu_mem_usage=True, torch_dtype=torch.bfloat16, revision=self.revision
|
|
).to(torch_device)
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained(self.model_id, revision=self.revision)
|
|
inputs = tokenizer(self.input_text, return_tensors="pt", padding=True).to(torch_device)
|
|
|
|
output = model.generate(**inputs, max_new_tokens=20, do_sample=False)
|
|
output_text = tokenizer.batch_decode(output, skip_special_tokens=True)
|
|
|
|
self.assertEqual(output_text, EXPECTED_TEXTS)
|
|
|
|
def test_model_9b_eager(self):
|
|
EXPECTED_TEXTS = [
|
|
"Hello I am doing a project on the history of the internetSolution:\n\nStep 1: Introduction\nThe history of the",
|
|
"Hi today I am going to show you how to make a simple and easy to make a DIY paper flower.",
|
|
]
|
|
|
|
model = AutoModelForCausalLM.from_pretrained(
|
|
self.model_id,
|
|
low_cpu_mem_usage=True,
|
|
torch_dtype=torch.bfloat16,
|
|
attn_implementation="eager",
|
|
revision=self.revision,
|
|
)
|
|
model.to(torch_device)
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained(self.model_id, revision=self.revision)
|
|
inputs = tokenizer(self.input_text, return_tensors="pt", padding=True).to(torch_device)
|
|
|
|
output = model.generate(**inputs, max_new_tokens=20, do_sample=False)
|
|
output_text = tokenizer.batch_decode(output, skip_special_tokens=True)
|
|
|
|
self.assertEqual(output_text, EXPECTED_TEXTS)
|
|
|
|
@require_torch_sdpa
|
|
def test_model_9b_sdpa(self):
|
|
EXPECTED_TEXTS = [
|
|
"Hello I am doing a project on the history of the internetSolution:\n\nStep 1: Introduction\nThe history of the",
|
|
"Hi today I am going to show you how to make a simple and easy to make a DIY paper flower.",
|
|
]
|
|
|
|
model = AutoModelForCausalLM.from_pretrained(
|
|
self.model_id,
|
|
low_cpu_mem_usage=True,
|
|
torch_dtype=torch.bfloat16,
|
|
attn_implementation="sdpa",
|
|
revision=self.revision,
|
|
)
|
|
model.to(torch_device)
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained(self.model_id, revision=self.revision)
|
|
inputs = tokenizer(self.input_text, return_tensors="pt", padding=True).to(torch_device)
|
|
|
|
output = model.generate(**inputs, max_new_tokens=20, do_sample=False)
|
|
output_text = tokenizer.batch_decode(output, skip_special_tokens=True)
|
|
|
|
self.assertEqual(output_text, EXPECTED_TEXTS)
|
|
|
|
@require_flash_attn
|
|
@pytest.mark.flash_attn_test
|
|
def test_model_9b_flash_attn(self):
|
|
EXPECTED_TEXTS = [
|
|
"Hello I am doing a project on the history of the internetSolution:\n\nStep 1: Introduction\nThe history of the",
|
|
"Hi today I am going to show you how to make a simple and easy to make a DIY paper flower.",
|
|
]
|
|
|
|
model = AutoModelForCausalLM.from_pretrained(
|
|
self.model_id,
|
|
low_cpu_mem_usage=True,
|
|
torch_dtype=torch.bfloat16,
|
|
attn_implementation="flash_attention_2",
|
|
revision=self.revision,
|
|
)
|
|
model.to(torch_device)
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained(self.model_id, revision=self.revision)
|
|
inputs = tokenizer(self.input_text, return_tensors="pt", padding=True).to(torch_device)
|
|
|
|
output = model.generate(**inputs, max_new_tokens=20, do_sample=False)
|
|
output_text = tokenizer.batch_decode(output, skip_special_tokens=True)
|
|
|
|
self.assertEqual(output_text, EXPECTED_TEXTS)
|