transformers/tests/models/efficientnet/test_image_processing_efficientnet.py
Zeeshan Khan Suri a7d2bbaaa8
Add EfficientNet Image PreProcessor (#37055)
* added efficientnet image preprocessor but tests fail

* ruff checks pass

* ruff formatted

* properly pass rescale_offset through the functions

* - corrected indentation, ordering of methods
- reshape test passes when casted to float64
- equivalence test doesn't pass

* all tests now pass
- changes order of rescale, normalize acc to slow
- rescale_offset defaults to False acc to slow
- resample was causing difference in fast and slow. Changing test to bilinear resolves this difference

* ruff reformat

* F.InterpolationMode.NEAREST_EXACT gives TypeError: Object of type InterpolationMode is not JSON serializable

* fixes offset not being applied when do_rescale and do_normalization are both true

* - using nearest_exact sampling
- added tests for rescale + normalize

* resolving reviews

---------

Co-authored-by: Yoni Gozlan <74535834+yonigozlan@users.noreply.github.com>
2025-04-16 21:59:24 +02:00

191 lines
7.8 KiB
Python

# Copyright 2023 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
import numpy as np
from transformers.image_utils import PILImageResampling
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import (
is_torch_available,
is_torchvision_available,
is_vision_available,
)
from ...test_image_processing_common import ImageProcessingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from transformers import EfficientNetImageProcessor
if is_torchvision_available():
from transformers import EfficientNetImageProcessorFast
class EfficientNetImageProcessorTester:
def __init__(
self,
parent,
batch_size=13,
num_channels=3,
image_size=18,
min_resolution=30,
max_resolution=400,
do_resize=True,
size=None,
do_normalize=True,
image_mean=[0.5, 0.5, 0.5],
image_std=[0.5, 0.5, 0.5],
do_rescale=True,
rescale_offset=True,
rescale_factor=1 / 127.5,
resample=PILImageResampling.BILINEAR, # NEAREST is too different between PIL and torchvision
):
size = size if size is not None else {"height": 18, "width": 18}
self.parent = parent
self.batch_size = batch_size
self.num_channels = num_channels
self.image_size = image_size
self.min_resolution = min_resolution
self.max_resolution = max_resolution
self.do_resize = do_resize
self.size = size
self.do_normalize = do_normalize
self.image_mean = image_mean
self.image_std = image_std
self.resample = resample
def prepare_image_processor_dict(self):
return {
"image_mean": self.image_mean,
"image_std": self.image_std,
"do_normalize": self.do_normalize,
"do_resize": self.do_resize,
"size": self.size,
"resample": self.resample,
}
def expected_output_image_shape(self, images):
return self.num_channels, self.size["height"], self.size["width"]
def prepare_image_inputs(self, equal_resolution=False, numpify=False, torchify=False):
return prepare_image_inputs(
batch_size=self.batch_size,
num_channels=self.num_channels,
min_resolution=self.min_resolution,
max_resolution=self.max_resolution,
equal_resolution=equal_resolution,
numpify=numpify,
torchify=torchify,
)
@require_torch
@require_vision
class EfficientNetImageProcessorTest(ImageProcessingTestMixin, unittest.TestCase):
image_processing_class = EfficientNetImageProcessor if is_vision_available() else None
fast_image_processing_class = EfficientNetImageProcessorFast if is_torchvision_available() else None
def setUp(self):
super().setUp()
self.image_processor_tester = EfficientNetImageProcessorTester(self)
@property
def image_processor_dict(self):
return self.image_processor_tester.prepare_image_processor_dict()
def test_image_processor_properties(self):
for image_processing_class in self.image_processor_list:
image_processing = image_processing_class(**self.image_processor_dict)
self.assertTrue(hasattr(image_processing, "image_mean"))
self.assertTrue(hasattr(image_processing, "image_std"))
self.assertTrue(hasattr(image_processing, "do_normalize"))
self.assertTrue(hasattr(image_processing, "do_resize"))
self.assertTrue(hasattr(image_processing, "size"))
def test_image_processor_from_dict_with_kwargs(self):
for image_processing_class in self.image_processor_list:
image_processor = image_processing_class.from_dict(self.image_processor_dict)
self.assertEqual(image_processor.size, {"height": 18, "width": 18})
image_processor = image_processing_class.from_dict(self.image_processor_dict, size=42)
self.assertEqual(image_processor.size, {"height": 42, "width": 42})
def test_rescale(self):
# EfficientNet optionally rescales between -1 and 1 instead of the usual 0 and 1
image = np.arange(0, 256, 1, dtype=np.uint8).reshape(1, 8, 32)
for image_processing_class in self.image_processor_list:
image_processor = image_processing_class(**self.image_processor_dict)
if image_processing_class == EfficientNetImageProcessorFast:
image = torch.from_numpy(image)
# Scale between [-1, 1] with rescale_factor 1/127.5 and rescale_offset=True
rescaled_image = image_processor.rescale(image, scale=1 / 127.5, offset=True)
expected_image = (image * (1 / 127.5)) - 1
self.assertTrue(torch.allclose(rescaled_image, expected_image))
# Scale between [0, 1] with rescale_factor 1/255 and rescale_offset=True
rescaled_image = image_processor.rescale(image, scale=1 / 255, offset=False)
expected_image = image / 255.0
self.assertTrue(torch.allclose(rescaled_image, expected_image))
else:
rescaled_image = image_processor.rescale(image, scale=1 / 127.5, dtype=np.float64)
expected_image = (image * (1 / 127.5)).astype(np.float64) - 1
self.assertTrue(np.allclose(rescaled_image, expected_image))
rescaled_image = image_processor.rescale(image, scale=1 / 255, offset=False, dtype=np.float64)
expected_image = (image / 255.0).astype(np.float64)
self.assertTrue(np.allclose(rescaled_image, expected_image))
@require_vision
@require_torch
def test_rescale_normalize(self):
if self.image_processing_class is None or self.fast_image_processing_class is None:
self.skipTest(reason="Skipping slow/fast equivalence test as one of the image processors is not defined")
image = torch.arange(0, 256, 1, dtype=torch.uint8).reshape(1, 8, 32).repeat(3, 1, 1)
image_mean_0 = (0.0, 0.0, 0.0)
image_std_0 = (1.0, 1.0, 1.0)
image_mean_1 = (0.5, 0.5, 0.5)
image_std_1 = (0.5, 0.5, 0.5)
image_processor_fast = self.fast_image_processing_class(**self.image_processor_dict)
# Rescale between [-1, 1] with rescale_factor=1/127.5 and rescale_offset=True. Then normalize
rescaled_normalized = image_processor_fast.rescale_and_normalize(
image, True, 1 / 127.5, True, image_mean_0, image_std_0, True
)
expected_image = (image * (1 / 127.5)) - 1
expected_image = (expected_image - torch.tensor(image_mean_0).view(3, 1, 1)) / torch.tensor(image_std_0).view(
3, 1, 1
)
self.assertTrue(torch.allclose(rescaled_normalized, expected_image, rtol=1e-3))
# Rescale between [0, 1] with rescale_factor=1/255 and rescale_offset=False. Then normalize
rescaled_normalized = image_processor_fast.rescale_and_normalize(
image, True, 1 / 255, True, image_mean_1, image_std_1, False
)
expected_image = image * (1 / 255.0)
expected_image = (expected_image - torch.tensor(image_mean_1).view(3, 1, 1)) / torch.tensor(image_std_1).view(
3, 1, 1
)
self.assertTrue(torch.allclose(rescaled_normalized, expected_image, rtol=1e-3))