transformers/docs/source/en/model_doc/mega.mdx
Mitch Naylor 57f25f4b7f
Add Mega: Moving Average Equipped Gated Attention (#21766)
* add mega file structure and plain pytorch version of mega source code

* added config class with old naming conventions

* filled in mega documentation

* added config class and embeddings with optional token types

* updated notes

* starting the conversion process, deleted intermediate and added use_cache back to config

* renamed config attributes in modeling_mega.py

* checkpointing before refactoring incremental decoding functions

* removed stateful incremental key/values for EMA and self-attention

* refactored MovingAverageGatedAttention to remove stateful k/v history and use unified attention mask

* MovingAverageGatedAttention works with incremental decoding + past values, added sequence length enforcement

* more comments in MovingAverageGatedAttention + checkpointing before GatedCrossAttention

* bug fix in attention mask handling in MovingAverageGatedAttention

* removed incremental state from GatedCrossAttention and removed IncrementalState class

* finished gated cross attention and got MegaLayer working

* fixed causal masking in mega decoder

* fixed how padding and causal masks are passed through MegaLayer with and without k/v caching

* finished MegaModel; tested with encoder, decoder-only, and cross-attention type inputs; started work on downstream classes; removed mentions of position_ids

* added optional dense hidden layer for masked and causal LM classes

* docstring updates in MultiHeadEMA and GatedCrossAttention, removed unnecessary inputs in cross-attention

* removed before_attn_fn in Mega class and updated docstrings and comments up to there

* bug fix in MovingAverageGatedAttention masking

* working conversion of MLM checkpoint in scratchpad script -- perfect matches

* moved arg for hidden dense layer in LM head to config; discovered issue where from_pretrained is renaming gamma and beta parameters

* renamed gamma and beta parameters to avoid HF renaming when loading from checkpoint

* finished checkpoint conversion script

* cleanup old class in mega config script

* removed 'copied from' statements and passing integration tests

* added num_attention_heads=1 to config for integration compatibility, decoder tests working, generation tests failing

* fixed tuple output of megamodel

* all common tests passing after fixing issues in decoder, gradient retention, and initialization

* added mega-specific tests, ready for more documentation and style checks

* updated docstrings; checkpoint before style fixes

* style and quality checks, fixed initialization problem in float_tensor, ready for PR

* added mega to toctree

* removed unnecessary arg in megaconfig

* removed unused arg and fixed code samples with leftover roberta models

* Apply suggestions from code review

Applied all suggestions except the one renaming a class, as I'll need to update that througout

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* fixed issue where .view breaks batch dimension, conversion script fixed with absolute imports, updated readme with Mega->MEGA

* removed asserts in Mega code, renamed sequencenorm, gatedcrossattention, and NFFN, replaced get_activation_fn with ACTFN, and added sequencenorm to layer norms

* reformatted .forward() docstrings to match style and removed unused mask input in cross-attention

* removed all reset_parameters() methods and rolled into MegaPreTrainedModel._init_weights()

* renamed all single-letter variables and improved readability in tensor size comments, Mega->MEGA in 2 documentation files

* variable names in NFFN

* manual Mega->MEGA changes in docs

* Mega->MEGA in config auto

* style and quality fixes

* Apply suggestions from code review

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* renamed parameters and variables with confusing names, added copied from statements, moved fft conv to its own method, other cleanup from PR comments

* commit before dealing with merge conflicts

* made new attention activation functions available in ACT2FN and added generation test from OPT

* style and quality in activations and tests

* documentation fixes, renaming variables in dropout and rotary positions, used built-in causal masking, encoders->layers in MegaModel, moved comments into docstrings

* style and quality fixes after latest updates, before rotary position ids

* causal mask in MegaBlock docstring + added missing device passing

* Apply suggestions from code review

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Update README.md

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* added Mega prefixes where missing, reverted MegaSequenceNorm to if-else, other module renaming requested in PR

* style and quality fixes + readme updates pointing to main

---------

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2023-03-24 08:17:27 -04:00

79 lines
4.0 KiB
Plaintext

<!--Copyright 2023 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# MEGA
## Overview
The MEGA model was proposed in [Mega: Moving Average Equipped Gated Attention](https://arxiv.org/abs/2209.10655) by Xuezhe Ma, Chunting Zhou, Xiang Kong, Junxian He, Liangke Gui, Graham Neubig, Jonathan May, and Luke Zettlemoyer.
MEGA proposes a new approach to self-attention with each encoder layer having a multi-headed exponential moving average in addition to a single head of standard dot-product attention, giving the attention mechanism
stronger positional biases. This allows MEGA to perform competitively to Transformers on standard benchmarks including LRA
while also having significantly fewer parameters. MEGA's compute efficiency allows it to scale to very long sequences, making it an
attractive option for long-document NLP tasks.
The abstract from the paper is the following:
*The design choices in the Transformer attention mechanism, including weak inductive bias and quadratic computational complexity, have limited its application for modeling long sequences. In this paper, we introduce Mega, a simple, theoretically grounded, single-head gated attention mechanism equipped with (exponential) moving average to incorporate inductive bias of position-aware local dependencies into the position-agnostic attention mechanism. We further propose a variant of Mega that offers linear time and space complexity yet yields only minimal quality loss, by efficiently splitting the whole sequence into multiple chunks with fixed length. Extensive experiments on a wide range of sequence modeling benchmarks, including the Long Range Arena, neural machine translation, auto-regressive language modeling, and image and speech classification, show that Mega achieves significant improvements over other sequence models, including variants of Transformers and recent state space models. *
Tips:
- MEGA can perform quite well with relatively few parameters. See Appendix D in the MEGA paper for examples of architectural specs which perform well in various settings. If using MEGA as a decoder, be sure to set `bidirectional=False` to avoid errors with default bidirectional.
- Mega-chunk is a variant of mega that reduces time and spaces complexity from quadratic to linear. Utilize chunking with MegaConfiig.use_chunking and control chunk size with MegaConfig.chunk_size
This model was contributed by [mnaylor](https://huggingface.co/mnaylor).
The original code can be found [here](https://github.com/facebookresearch/mega).
Implementation Notes:
- The original implementation of MEGA had an inconsistent expectation of attention masks for padding and causal self-attention between the softmax attention and Laplace/squared ReLU method. This implementation addresses that inconsistency.
- The original implementation did not include token type embeddings; this implementation adds support for these, with the option controlled by MegaConfig.add_token_type_embeddings
## MegaConfig
[[autodoc]] MegaConfig
## MegaModel
[[autodoc]] MegaModel
- forward
## MegaForCausalLM
[[autodoc]] MegaForCausalLM
- forward
## MegaForMaskedLM
[[autodoc]] MegaForMaskedLM
- forward
## MegaForSequenceClassification
[[autodoc]] MegaForSequenceClassification
- forward
## MegaForMultipleChoice
[[autodoc]] MegaForMultipleChoice
- forward
## MegaForTokenClassification
[[autodoc]] MegaForTokenClassification
- forward
## MegaForQuestionAnswering
[[autodoc]] MegaForQuestionAnswering
- forward