transformers/tests/quantization/hqq/test_hqq.py
Yao Matrix a5a0c7b888
switch to device agnostic device calling for test cases (#38247)
* use device agnostic APIs in test cases

Signed-off-by: Matrix Yao <matrix.yao@intel.com>

* fix style

Signed-off-by: Matrix Yao <matrix.yao@intel.com>

* add one more

Signed-off-by: YAO Matrix <matrix.yao@intel.com>

* xpu now supports integer device id, aligning to CUDA behaviors

Signed-off-by: Matrix Yao <matrix.yao@intel.com>

* update to use device_properties

Signed-off-by: Matrix Yao <matrix.yao@intel.com>

* fix style

Signed-off-by: Matrix Yao <matrix.yao@intel.com>

* update comment

Signed-off-by: Matrix Yao <matrix.yao@intel.com>

* fix comments

Signed-off-by: Matrix Yao <matrix.yao@intel.com>

* fix style

Signed-off-by: Matrix Yao <matrix.yao@intel.com>

---------

Signed-off-by: Matrix Yao <matrix.yao@intel.com>
Signed-off-by: YAO Matrix <matrix.yao@intel.com>
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2025-05-26 10:18:53 +02:00

276 lines
8.5 KiB
Python
Executable File

# Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import gc
import unittest
from transformers import AutoModelForCausalLM, AutoTokenizer, HqqConfig
from transformers.testing_utils import (
backend_empty_cache,
require_accelerate,
require_hqq,
require_torch_gpu,
require_torch_multi_gpu,
slow,
torch_device,
)
from transformers.utils import is_hqq_available, is_torch_available
if is_torch_available():
import torch
if is_hqq_available():
from hqq.core.quantize import HQQBackend, HQQLinear
class HQQLLMRunner:
def __init__(self, model_id, quant_config, compute_dtype, device, cache_dir=None):
self.model = AutoModelForCausalLM.from_pretrained(
model_id,
torch_dtype=compute_dtype,
device_map=device,
quantization_config=quant_config,
low_cpu_mem_usage=True,
cache_dir=cache_dir,
)
self.tokenizer = AutoTokenizer.from_pretrained(model_id, cache_dir=cache_dir)
self.device = self.model.device
HQQLinear.set_backend(HQQBackend.PYTORCH)
def cleanup():
backend_empty_cache(torch_device)
gc.collect()
def check_hqqlayer(test_module, hqq_layer, batch_size=1, context_size=1024):
# Test HQQ layer
W_dequant = hqq_layer.dequantize() # Reconstructed weights
inputs = (
torch.randn(
(batch_size, context_size, hqq_layer.meta["shape"][1]),
device=hqq_layer.device,
dtype=hqq_layer.compute_dtype,
)
/ 10.0
)
with torch.no_grad():
outputs = hqq_layer(inputs)
test_module.assertEqual(outputs.shape[-1], W_dequant.shape[0])
test_module.assertEqual(outputs.dtype, hqq_layer.compute_dtype)
del W_dequant, inputs, outputs
cleanup()
def check_forward(test_module, model, batch_size=1, context_size=1024):
# Test forward pass
with torch.no_grad():
out = model(torch.zeros([batch_size, context_size], device=model.device, dtype=torch.int32)).logits
test_module.assertEqual(out.shape[0], batch_size)
test_module.assertEqual(out.shape[1], context_size)
cleanup()
MODEL_ID = "TinyLlama/TinyLlama-1.1B-Chat-v1.0"
@require_torch_gpu
@require_hqq
class HqqConfigTest(unittest.TestCase):
def test_to_dict(self):
"""
Makes sure the config format is properly set
"""
quantization_config = HqqConfig()
hqq_orig_config = quantization_config.to_dict()
self.assertEqual(quantization_config.quant_config, hqq_orig_config["quant_config"])
@slow
@require_torch_gpu
@require_accelerate
@require_hqq
class HQQTest(unittest.TestCase):
def tearDown(self):
cleanup()
def test_fp16_quantized_model(self):
"""
Simple LLM model testing fp16
"""
quant_config = HqqConfig(nbits=8, group_size=64)
hqq_runner = HQQLLMRunner(
model_id=MODEL_ID, quant_config=quant_config, compute_dtype=torch.float16, device=torch_device
)
check_hqqlayer(self, hqq_runner.model.model.layers[0].self_attn.v_proj)
check_forward(self, hqq_runner.model)
@slow
@require_torch_gpu
@require_torch_multi_gpu
@require_accelerate
@require_hqq
class HQQTestMultiGPU(unittest.TestCase):
def tearDown(self):
cleanup()
def test_fp16_quantized_model_multipgpu(self):
"""
Simple LLM model testing fp16 with multi-gpu
"""
quant_config = HqqConfig(nbits=8, group_size=64)
hqq_runner = HQQLLMRunner(
model_id=MODEL_ID, quant_config=quant_config, compute_dtype=torch.float16, device="auto"
)
check_hqqlayer(self, hqq_runner.model.model.layers[0].self_attn.v_proj)
check_forward(self, hqq_runner.model)
@slow
@require_torch_gpu
@require_accelerate
@require_hqq
class HQQTestBias(unittest.TestCase):
def tearDown(self):
cleanup()
def test_fp16_quantized_model(self):
"""
Simple LLM model testing fp16 with bias
"""
quant_config = HqqConfig(nbits=8, group_size=64)
hqq_runner = HQQLLMRunner(
model_id="facebook/opt-125m", quant_config=quant_config, compute_dtype=torch.float16, device=torch_device
)
check_hqqlayer(self, hqq_runner.model.model.decoder.layers[0].self_attn.v_proj)
check_forward(self, hqq_runner.model)
def test_save_and_load_quantized_model(self):
"""
Test saving and loading a quantized model with bias
"""
import tempfile
quant_config = HqqConfig(nbits=8, group_size=64)
hqq_runner = HQQLLMRunner(
model_id="facebook/opt-125m", quant_config=quant_config, compute_dtype=torch.float16, device=torch_device
)
input_tensor = torch.zeros((1, 8), dtype=torch.int32, device=torch_device)
# Get reference logits
with torch.no_grad():
logits_ref = hqq_runner.model.forward(input_tensor).logits
with tempfile.TemporaryDirectory() as tmpdirname:
hqq_runner.model.save_pretrained(tmpdirname)
del hqq_runner.model
backend_empty_cache(torch_device)
model_loaded = AutoModelForCausalLM.from_pretrained(
tmpdirname, torch_dtype=torch.float16, device_map=torch_device
)
with torch.no_grad():
logits_loaded = model_loaded.forward(input_tensor).logits
self.assertEqual((logits_loaded - logits_ref).abs().mean().item(), 0)
@slow
@require_torch_gpu
@require_accelerate
@require_hqq
class HQQSerializationTest(unittest.TestCase):
def tearDown(self):
cleanup()
def test_model_serialization(self):
"""
Simple HQQ LLM save/load test
"""
quant_config = HqqConfig(nbits=4, group_size=64)
hqq_runner = HQQLLMRunner(
model_id=MODEL_ID, quant_config=quant_config, compute_dtype=torch.float16, device=torch_device
)
input_tensor = torch.zeros((1, 8), dtype=torch.int32, device=torch_device)
with torch.no_grad():
logits_ref = hqq_runner.model.forward(input_tensor).logits
# Save
saved_model_id = "quant_model"
hqq_runner.model.save_pretrained(saved_model_id)
# Remove old model
del hqq_runner.model
backend_empty_cache(torch_device)
# Load and check if the logits match
model_loaded = AutoModelForCausalLM.from_pretrained(
"quant_model", torch_dtype=torch.float16, device_map=torch_device, low_cpu_mem_usage=True
)
with torch.no_grad():
logits_loaded = model_loaded.forward(input_tensor).logits
self.assertEqual((logits_loaded - logits_ref).abs().mean().item(), 0)
def test_model_serialization_dynamic_quant_with_skip(self):
"""
Simple HQQ LLM save/load test with dynamic quant
"""
q4_config = {"nbits": 4, "group_size": 64}
q3_config = {"nbits": 3, "group_size": 64}
quant_config = HqqConfig(
dynamic_config={
"self_attn.q_proj": q4_config,
"self_attn.k_proj": q4_config,
"self_attn.v_proj": q4_config,
"self_attn.o_proj": q4_config,
"mlp.gate_proj": q3_config,
"mlp.up_proj": q3_config,
},
skip_modules=["lm_head", "down_proj"],
)
hqq_runner = HQQLLMRunner(
model_id=MODEL_ID, quant_config=quant_config, compute_dtype=torch.float16, device=torch_device
)
model = hqq_runner.model
input_tensor = torch.zeros((1, 8), dtype=torch.int32, device=torch_device)
with torch.no_grad():
model.forward(input_tensor).logits
self.assertEqual(isinstance(model.model.layers[1].mlp.down_proj, torch.nn.Linear), True)
self.assertEqual(model.model.layers[1].self_attn.v_proj.quant_config["weight_quant_params"]["nbits"], 4)
self.assertEqual(model.model.layers[1].mlp.gate_proj.quant_config["weight_quant_params"]["nbits"], 3)