mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-03 12:50:06 +06:00

* use device agnostic APIs in test cases Signed-off-by: Matrix Yao <matrix.yao@intel.com> * fix style Signed-off-by: Matrix Yao <matrix.yao@intel.com> * add one more Signed-off-by: YAO Matrix <matrix.yao@intel.com> * xpu now supports integer device id, aligning to CUDA behaviors Signed-off-by: Matrix Yao <matrix.yao@intel.com> * update to use device_properties Signed-off-by: Matrix Yao <matrix.yao@intel.com> * fix style Signed-off-by: Matrix Yao <matrix.yao@intel.com> * update comment Signed-off-by: Matrix Yao <matrix.yao@intel.com> * fix comments Signed-off-by: Matrix Yao <matrix.yao@intel.com> * fix style Signed-off-by: Matrix Yao <matrix.yao@intel.com> --------- Signed-off-by: Matrix Yao <matrix.yao@intel.com> Signed-off-by: YAO Matrix <matrix.yao@intel.com> Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
226 lines
7.6 KiB
Python
226 lines
7.6 KiB
Python
# Copyright 2024 The HuggingFace Team. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import gc
|
|
import unittest
|
|
|
|
from transformers import (
|
|
AutoConfig,
|
|
AutoModelForCausalLM,
|
|
AutoTokenizer,
|
|
BitNetQuantConfig,
|
|
OPTForCausalLM,
|
|
)
|
|
from transformers.testing_utils import (
|
|
backend_empty_cache,
|
|
require_accelerate,
|
|
require_torch_gpu,
|
|
slow,
|
|
torch_device,
|
|
)
|
|
from transformers.utils import is_accelerate_available, is_torch_available
|
|
|
|
|
|
if is_torch_available():
|
|
import torch
|
|
|
|
if is_accelerate_available():
|
|
from accelerate import init_empty_weights
|
|
|
|
|
|
@require_torch_gpu
|
|
class BitNetQuantConfigTest(unittest.TestCase):
|
|
def test_to_dict(self):
|
|
"""
|
|
Simple test that checks if one uses a config and converts it to a dict, the dict is the same as the config object
|
|
"""
|
|
quantization_config = BitNetQuantConfig()
|
|
config_to_dict = quantization_config.to_dict()
|
|
|
|
for key in config_to_dict:
|
|
self.assertEqual(getattr(quantization_config, key), config_to_dict[key])
|
|
|
|
|
|
@slow
|
|
@require_torch_gpu
|
|
@require_accelerate
|
|
class BitNetTest(unittest.TestCase):
|
|
model_name = "HF1BitLLM/Llama3-8B-1.58-100B-tokens"
|
|
|
|
# called only once for all test in this class
|
|
@classmethod
|
|
def setUpClass(cls):
|
|
"""
|
|
Load the model
|
|
"""
|
|
cls.tokenizer = AutoTokenizer.from_pretrained(cls.model_name)
|
|
cls.quantized_model = AutoModelForCausalLM.from_pretrained(cls.model_name, device_map=torch_device)
|
|
|
|
def tearDown(self):
|
|
gc.collect()
|
|
backend_empty_cache(torch_device)
|
|
gc.collect()
|
|
|
|
def test_replace_with_bitlinear(self):
|
|
from transformers.integrations import BitLinear, replace_with_bitnet_linear
|
|
|
|
model_id = "facebook/opt-350m"
|
|
config = AutoConfig.from_pretrained(model_id)
|
|
|
|
with init_empty_weights():
|
|
model = OPTForCausalLM(config)
|
|
|
|
nb_linears = 0
|
|
for module in model.modules():
|
|
if isinstance(module, torch.nn.Linear):
|
|
nb_linears += 1
|
|
|
|
model = replace_with_bitnet_linear(model)
|
|
nb_bitnet_linear = 0
|
|
for module in model.modules():
|
|
if isinstance(module, BitLinear):
|
|
nb_bitnet_linear += 1
|
|
|
|
self.assertEqual(nb_linears - 1, nb_bitnet_linear)
|
|
|
|
def test_quantized_model(self):
|
|
"""
|
|
Simple test that checks if the quantized model is working properly
|
|
"""
|
|
input_text = "What are we having for dinner?"
|
|
expected_output = "What are we having for dinner? What are we going to do for fun this weekend?"
|
|
input_ids = self.tokenizer(input_text, return_tensors="pt").to(torch_device)
|
|
|
|
output = self.quantized_model.generate(**input_ids, max_new_tokens=11, do_sample=False)
|
|
self.assertEqual(self.tokenizer.decode(output[0], skip_special_tokens=True), expected_output)
|
|
|
|
def test_packing_unpacking(self):
|
|
"""
|
|
Simple test the packing and unpacking logic
|
|
"""
|
|
|
|
from transformers.integrations import pack_weights, unpack_weights
|
|
|
|
u = torch.randint(0, 255, (256, 256), dtype=torch.uint8)
|
|
unpacked_u = unpack_weights(u, dtype=torch.bfloat16)
|
|
repacked_u = pack_weights(unpacked_u)
|
|
for i in range(u.shape[0]):
|
|
for j in range(u.shape[1]):
|
|
self.assertEqual(repacked_u[i][j], u[i][j])
|
|
|
|
def test_activation_quant(self):
|
|
"""
|
|
test the activation function behaviour
|
|
"""
|
|
|
|
from transformers.integrations import BitLinear
|
|
|
|
layer = BitLinear(in_features=4, out_features=2, bias=False, dtype=torch.float32)
|
|
layer.to(torch_device)
|
|
|
|
input_tensor = torch.tensor([1.0, -1.0, -1.0, 1.0], dtype=torch.float32).to(torch_device)
|
|
|
|
# Quantize the input tensor
|
|
quantized_tensor, scale = layer.activation_quant(input_tensor)
|
|
|
|
# Verify the output quantized tensor
|
|
for i in range(input_tensor.shape[0]):
|
|
self.assertEqual(quantized_tensor[i] / scale, input_tensor[i])
|
|
|
|
# Verify the scale tensor
|
|
self.assertEqual(scale, 127)
|
|
|
|
def test_weights_dtype(self):
|
|
"""
|
|
test the weights dtype after loading
|
|
"""
|
|
|
|
self_attn_q = self.quantized_model.model.layers[0].self_attn.q_proj.weight
|
|
self_attn_k = self.quantized_model.model.layers[0].self_attn.k_proj.weight
|
|
self_attn_v = self.quantized_model.model.layers[0].self_attn.v_proj.weight
|
|
self_attn_o = self.quantized_model.model.layers[0].self_attn.o_proj.weight
|
|
mlp_gate = self.quantized_model.model.layers[0].mlp.gate_proj.weight
|
|
mlp_up = self.quantized_model.model.layers[0].mlp.up_proj.weight
|
|
mlp_down = self.quantized_model.model.layers[0].mlp.down_proj.weight
|
|
|
|
self.assertEqual(self_attn_q.dtype, torch.uint8)
|
|
self.assertEqual(self_attn_k.dtype, torch.uint8)
|
|
self.assertEqual(self_attn_v.dtype, torch.uint8)
|
|
self.assertEqual(self_attn_o.dtype, torch.uint8)
|
|
self.assertEqual(mlp_up.dtype, torch.uint8)
|
|
self.assertEqual(mlp_gate.dtype, torch.uint8)
|
|
self.assertEqual(mlp_down.dtype, torch.uint8)
|
|
|
|
def test_replace_with_bitlinear_shape(self):
|
|
"""
|
|
test that the BitNet layer weight shapes are correct, and the weight_scale is correctly initialized to 1
|
|
"""
|
|
|
|
from transformers.integrations import replace_with_bitnet_linear
|
|
|
|
out_features = 1024
|
|
in_features = 512
|
|
|
|
class SimpleLinearModule(torch.nn.Module):
|
|
"""
|
|
Simple class to test BitLinear
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
in_features: int = in_features,
|
|
out_features: int = out_features,
|
|
bias: bool = False,
|
|
):
|
|
super().__init__()
|
|
self.linear = torch.nn.Linear(in_features=in_features, out_features=out_features, bias=bias)
|
|
|
|
def forward(self, x):
|
|
return self.linear(x)
|
|
|
|
model = SimpleLinearModule()
|
|
replace_with_bitnet_linear(model)
|
|
|
|
self.assertEqual(list(model.linear.weight.shape), [out_features // 4, in_features])
|
|
self.assertEqual(model.linear.weight_scale, 1)
|
|
|
|
|
|
@slow
|
|
@require_torch_gpu
|
|
@require_accelerate
|
|
class BitNetSerializationTest(unittest.TestCase):
|
|
def test_model_serialization(self):
|
|
model_name = "HF1BitLLM/Llama3-8B-1.58-100B-tokens"
|
|
quantized_model = AutoModelForCausalLM.from_pretrained(model_name, device_map=torch_device)
|
|
input_tensor = torch.zeros((1, 8), dtype=torch.int32, device=torch_device)
|
|
|
|
with torch.no_grad():
|
|
logits_ref = quantized_model.forward(input_tensor).logits
|
|
|
|
# Save
|
|
saved_model_id = "quant_model"
|
|
quantized_model.save_pretrained(saved_model_id)
|
|
|
|
# Remove old model
|
|
del quantized_model
|
|
backend_empty_cache(torch_device)
|
|
|
|
# Load and check if the logits match
|
|
model_loaded = AutoModelForCausalLM.from_pretrained("quant_model", device_map=torch_device)
|
|
|
|
with torch.no_grad():
|
|
logits_loaded = model_loaded.forward(input_tensor).logits
|
|
|
|
self.assertEqual((logits_loaded - logits_ref).abs().mean().item(), 0)
|