transformers/tests/models/glm/test_modeling_glm.py
Yao Matrix a5a0c7b888
switch to device agnostic device calling for test cases (#38247)
* use device agnostic APIs in test cases

Signed-off-by: Matrix Yao <matrix.yao@intel.com>

* fix style

Signed-off-by: Matrix Yao <matrix.yao@intel.com>

* add one more

Signed-off-by: YAO Matrix <matrix.yao@intel.com>

* xpu now supports integer device id, aligning to CUDA behaviors

Signed-off-by: Matrix Yao <matrix.yao@intel.com>

* update to use device_properties

Signed-off-by: Matrix Yao <matrix.yao@intel.com>

* fix style

Signed-off-by: Matrix Yao <matrix.yao@intel.com>

* update comment

Signed-off-by: Matrix Yao <matrix.yao@intel.com>

* fix comments

Signed-off-by: Matrix Yao <matrix.yao@intel.com>

* fix style

Signed-off-by: Matrix Yao <matrix.yao@intel.com>

---------

Signed-off-by: Matrix Yao <matrix.yao@intel.com>
Signed-off-by: YAO Matrix <matrix.yao@intel.com>
Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2025-05-26 10:18:53 +02:00

191 lines
7.0 KiB
Python

# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Testing suite for the PyTorch Glm model."""
import unittest
import pytest
from transformers import AutoModelForCausalLM, AutoTokenizer, GlmConfig, is_torch_available
from transformers.testing_utils import (
require_flash_attn,
require_torch,
require_torch_large_accelerator,
require_torch_sdpa,
slow,
torch_device,
)
from ...causal_lm_tester import CausalLMModelTest, CausalLMModelTester
if is_torch_available():
import torch
from transformers import (
GlmForCausalLM,
GlmForSequenceClassification,
GlmForTokenClassification,
GlmModel,
)
@require_torch
class GlmModelTester(CausalLMModelTester):
config_class = GlmConfig
if is_torch_available():
base_model_class = GlmModel
causal_lm_class = GlmForCausalLM
sequence_class = GlmForSequenceClassification
token_class = GlmForTokenClassification
@require_torch
class GlmModelTest(CausalLMModelTest, unittest.TestCase):
all_model_classes = (
(GlmModel, GlmForCausalLM, GlmForSequenceClassification, GlmForTokenClassification)
if is_torch_available()
else ()
)
pipeline_model_mapping = (
{
"feature-extraction": GlmModel,
"text-classification": GlmForSequenceClassification,
"token-classification": GlmForTokenClassification,
"text-generation": GlmForCausalLM,
}
if is_torch_available()
else {}
)
test_headmasking = False
test_pruning = False
model_tester_class = GlmModelTester
@slow
@require_torch_large_accelerator
class GlmIntegrationTest(unittest.TestCase):
input_text = ["Hello I am doing", "Hi today"]
model_id = "THUDM/glm-4-9b"
revision = "refs/pr/15"
def test_model_9b_fp16(self):
EXPECTED_TEXTS = [
"Hello I am doing a project on the history of the internetSolution:\n\nStep 1: Introduction\nThe history of the",
"Hi today I am going to show you how to make a simple and easy to make a DIY paper flower.",
]
model = AutoModelForCausalLM.from_pretrained(
self.model_id, low_cpu_mem_usage=True, torch_dtype=torch.float16, revision=self.revision
).to(torch_device)
tokenizer = AutoTokenizer.from_pretrained(self.model_id, revision=self.revision)
inputs = tokenizer(self.input_text, return_tensors="pt", padding=True).to(torch_device)
output = model.generate(**inputs, max_new_tokens=20, do_sample=False)
output_text = tokenizer.batch_decode(output, skip_special_tokens=True)
self.assertEqual(output_text, EXPECTED_TEXTS)
def test_model_9b_bf16(self):
EXPECTED_TEXTS = [
"Hello I am doing a project on the history of the internetSolution:\n\nStep 1: Introduction\nThe history of the",
"Hi today I am going to show you how to make a simple and easy to make a DIY paper flower.",
]
model = AutoModelForCausalLM.from_pretrained(
self.model_id, low_cpu_mem_usage=True, torch_dtype=torch.bfloat16, revision=self.revision
).to(torch_device)
tokenizer = AutoTokenizer.from_pretrained(self.model_id, revision=self.revision)
inputs = tokenizer(self.input_text, return_tensors="pt", padding=True).to(torch_device)
output = model.generate(**inputs, max_new_tokens=20, do_sample=False)
output_text = tokenizer.batch_decode(output, skip_special_tokens=True)
self.assertEqual(output_text, EXPECTED_TEXTS)
def test_model_9b_eager(self):
EXPECTED_TEXTS = [
"Hello I am doing a project on the history of the internetSolution:\n\nStep 1: Introduction\nThe history of the",
"Hi today I am going to show you how to make a simple and easy to make a DIY paper flower.",
]
model = AutoModelForCausalLM.from_pretrained(
self.model_id,
low_cpu_mem_usage=True,
torch_dtype=torch.bfloat16,
attn_implementation="eager",
revision=self.revision,
)
model.to(torch_device)
tokenizer = AutoTokenizer.from_pretrained(self.model_id, revision=self.revision)
inputs = tokenizer(self.input_text, return_tensors="pt", padding=True).to(torch_device)
output = model.generate(**inputs, max_new_tokens=20, do_sample=False)
output_text = tokenizer.batch_decode(output, skip_special_tokens=True)
self.assertEqual(output_text, EXPECTED_TEXTS)
@require_torch_sdpa
def test_model_9b_sdpa(self):
EXPECTED_TEXTS = [
"Hello I am doing a project on the history of the internetSolution:\n\nStep 1: Introduction\nThe history of the",
"Hi today I am going to show you how to make a simple and easy to make a DIY paper flower.",
]
model = AutoModelForCausalLM.from_pretrained(
self.model_id,
low_cpu_mem_usage=True,
torch_dtype=torch.bfloat16,
attn_implementation="sdpa",
revision=self.revision,
)
model.to(torch_device)
tokenizer = AutoTokenizer.from_pretrained(self.model_id, revision=self.revision)
inputs = tokenizer(self.input_text, return_tensors="pt", padding=True).to(torch_device)
output = model.generate(**inputs, max_new_tokens=20, do_sample=False)
output_text = tokenizer.batch_decode(output, skip_special_tokens=True)
self.assertEqual(output_text, EXPECTED_TEXTS)
@require_flash_attn
@pytest.mark.flash_attn_test
def test_model_9b_flash_attn(self):
EXPECTED_TEXTS = [
"Hello I am doing a project on the history of the internetSolution:\n\nStep 1: Introduction\nThe history of the",
"Hi today I am going to show you how to make a simple and easy to make a DIY paper flower.",
]
model = AutoModelForCausalLM.from_pretrained(
self.model_id,
low_cpu_mem_usage=True,
torch_dtype=torch.bfloat16,
attn_implementation="flash_attention_2",
revision=self.revision,
)
model.to(torch_device)
tokenizer = AutoTokenizer.from_pretrained(self.model_id, revision=self.revision)
inputs = tokenizer(self.input_text, return_tensors="pt", padding=True).to(torch_device)
output = model.generate(**inputs, max_new_tokens=20, do_sample=False)
output_text = tokenizer.batch_decode(output, skip_special_tokens=True)
self.assertEqual(output_text, EXPECTED_TEXTS)