transformers/examples/seq2seq/finetune.py

459 lines
19 KiB
Python

import argparse
import glob
import logging
import os
import time
from collections import defaultdict
from pathlib import Path
from typing import Dict, List, Tuple
import numpy as np
import pytorch_lightning as pl
import torch
from torch.utils.data import DataLoader
from lightning_base import BaseTransformer, add_generic_args, generic_train
from transformers import MBartTokenizer, T5ForConditionalGeneration
from transformers.modeling_bart import shift_tokens_right
try:
from .callbacks import Seq2SeqLoggingCallback, get_checkpoint_callback, get_early_stopping_callback
from .utils import (
ROUGE_KEYS,
LegacySeq2SeqDataset,
Seq2SeqDataset,
assert_all_frozen,
calculate_bleu,
calculate_rouge,
flatten_list,
freeze_params,
get_git_info,
label_smoothed_nll_loss,
lmap,
pickle_save,
save_git_info,
save_json,
use_task_specific_params,
)
except ImportError:
from callbacks import Seq2SeqLoggingCallback, get_checkpoint_callback, get_early_stopping_callback
from utils import (
ROUGE_KEYS,
LegacySeq2SeqDataset,
Seq2SeqDataset,
assert_all_frozen,
calculate_bleu,
calculate_rouge,
flatten_list,
freeze_params,
get_git_info,
label_smoothed_nll_loss,
lmap,
pickle_save,
save_git_info,
save_json,
use_task_specific_params,
)
logger = logging.getLogger(__name__)
class SummarizationModule(BaseTransformer):
mode = "summarization"
loss_names = ["loss"]
metric_names = ROUGE_KEYS
default_val_metric = "rouge2"
def __init__(self, hparams, **kwargs):
if hparams.sortish_sampler and hparams.gpus > 1:
hparams.replace_sampler_ddp = False
elif hparams.max_tokens_per_batch is not None:
if hparams.gpus > 1:
raise NotImplementedError("Dynamic Batch size does not work for multi-gpu training")
if hparams.sortish_sampler:
raise ValueError("--sortish_sampler and --max_tokens_per_batch may not be used simultaneously")
super().__init__(hparams, num_labels=None, mode=self.mode, **kwargs)
use_task_specific_params(self.model, "summarization")
save_git_info(self.hparams.output_dir)
self.metrics_save_path = Path(self.output_dir) / "metrics.json"
self.hparams_save_path = Path(self.output_dir) / "hparams.pkl"
pickle_save(self.hparams, self.hparams_save_path)
self.step_count = 0
self.metrics = defaultdict(list)
self.dataset_kwargs: dict = dict(
data_dir=self.hparams.data_dir,
max_source_length=self.hparams.max_source_length,
prefix=self.model.config.prefix or "",
)
n_observations_per_split = {
"train": self.hparams.n_train,
"val": self.hparams.n_val,
"test": self.hparams.n_test,
}
self.n_obs = {k: v if v >= 0 else None for k, v in n_observations_per_split.items()}
self.target_lens = {
"train": self.hparams.max_target_length,
"val": self.hparams.val_max_target_length,
"test": self.hparams.test_max_target_length,
}
assert self.target_lens["train"] <= self.target_lens["val"], f"target_lens: {self.target_lens}"
assert self.target_lens["train"] <= self.target_lens["test"], f"target_lens: {self.target_lens}"
if self.hparams.sortish_sampler and self.hparams.gpus > 1:
raise AssertionError("Sortish Sampler does not work for multigpu")
if self.hparams.sortish_sampler and self.hparams.max_tokens_per_batch is not None:
raise AssertionError("max tokens per batch and sortish sampler are incompatible.")
if self.hparams.freeze_embeds:
self.freeze_embeds()
if self.hparams.freeze_encoder:
freeze_params(self.model.get_encoder())
assert_all_frozen(self.model.get_encoder())
self.hparams.git_sha = get_git_info()["repo_sha"]
self.num_workers = hparams.num_workers
self.decoder_start_token_id = None # default to config
if self.model.config.decoder_start_token_id is None and isinstance(self.tokenizer, MBartTokenizer):
self.decoder_start_token_id = self.tokenizer.lang_code_to_id[hparams.tgt_lang]
self.model.config.decoder_start_token_id = self.decoder_start_token_id
self.dataset_class = (
Seq2SeqDataset if hasattr(self.tokenizer, "prepare_seq2seq_batch") else LegacySeq2SeqDataset
)
self.eval_beams = self.model.config.num_beams if self.hparams.eval_beams is None else self.hparams.eval_beams
assert self.eval_beams >= 1, f"got self.eval_beams={self.eval_beams}. Need an integer > 1"
if self.hparams.eval_max_gen_length is not None:
self.eval_max_length = self.hparams.eval_max_gen_length
else:
self.eval_max_length = self.model.config.max_length
self.val_metric = self.default_val_metric if self.hparams.val_metric is None else self.hparams.val_metric
def freeze_embeds(self):
"""Freeze token embeddings and positional embeddings for bart, just token embeddings for t5."""
try:
freeze_params(self.model.model.shared)
for d in [self.model.model.encoder, self.model.model.decoder]:
freeze_params(d.embed_positions)
freeze_params(d.embed_tokens)
except AttributeError:
freeze_params(self.model.shared)
for d in [self.model.encoder, self.model.decoder]:
freeze_params(d.embed_tokens)
def forward(self, input_ids, **kwargs):
return self.model(input_ids, **kwargs)
def ids_to_clean_text(self, generated_ids: List[int]):
gen_text = self.tokenizer.batch_decode(
generated_ids, skip_special_tokens=True, clean_up_tokenization_spaces=True
)
return lmap(str.strip, gen_text)
def _step(self, batch: dict) -> Tuple:
pad_token_id = self.tokenizer.pad_token_id
src_ids, src_mask = batch["input_ids"], batch["attention_mask"]
tgt_ids = batch["labels"]
if isinstance(self.model, T5ForConditionalGeneration):
decoder_input_ids = self.model._shift_right(tgt_ids)
else:
decoder_input_ids = shift_tokens_right(tgt_ids, pad_token_id)
outputs = self(src_ids, attention_mask=src_mask, decoder_input_ids=decoder_input_ids, use_cache=False)
lm_logits = outputs[0]
if self.hparams.label_smoothing == 0:
# Same behavior as modeling_bart.py, besides ignoring pad_token_id
ce_loss_fct = torch.nn.CrossEntropyLoss(ignore_index=pad_token_id)
assert lm_logits.shape[-1] == self.model.config.vocab_size
loss = ce_loss_fct(lm_logits.view(-1, lm_logits.shape[-1]), tgt_ids.view(-1))
else:
lprobs = torch.nn.functional.log_softmax(lm_logits, dim=-1)
loss, nll_loss = label_smoothed_nll_loss(
lprobs, tgt_ids, self.hparams.label_smoothing, ignore_index=pad_token_id
)
return (loss,)
@property
def pad(self) -> int:
return self.tokenizer.pad_token_id
def training_step(self, batch, batch_idx) -> Dict:
loss_tensors = self._step(batch)
logs = {name: loss for name, loss in zip(self.loss_names, loss_tensors)}
# tokens per batch
logs["tpb"] = batch["input_ids"].ne(self.pad).sum() + batch["labels"].ne(self.pad).sum()
logs["bs"] = batch["input_ids"].shape[0]
logs["src_pad_tok"] = batch["input_ids"].eq(self.pad).sum()
logs["src_pad_frac"] = batch["input_ids"].eq(self.pad).float().mean()
# TODO(SS): make a wandb summary metric for this
return {"loss": loss_tensors[0], "log": logs}
def validation_step(self, batch, batch_idx) -> Dict:
return self._generative_step(batch)
def validation_epoch_end(self, outputs, prefix="val") -> Dict:
self.step_count += 1
losses = {k: torch.stack([x[k] for x in outputs]).mean() for k in self.loss_names}
loss = losses["loss"]
generative_metrics = {
k: np.array([x[k] for x in outputs]).mean() for k in self.metric_names + ["gen_time", "gen_len"]
}
metric_val = (
generative_metrics[self.val_metric] if self.val_metric in generative_metrics else losses[self.val_metric]
)
metric_tensor: torch.FloatTensor = torch.tensor(metric_val).type_as(loss)
generative_metrics.update({k: v.item() for k, v in losses.items()})
losses.update(generative_metrics)
all_metrics = {f"{prefix}_avg_{k}": x for k, x in losses.items()}
all_metrics["step_count"] = self.step_count
self.save_metrics(all_metrics, prefix) # writes to self.metrics_save_path
preds = flatten_list([x["preds"] for x in outputs])
return {
"log": all_metrics,
"preds": preds,
f"{prefix}_loss": loss,
f"{prefix}_{self.val_metric}": metric_tensor,
}
def save_metrics(self, latest_metrics, type_path) -> None:
self.metrics[type_path].append(latest_metrics)
save_json(self.metrics, self.metrics_save_path)
def calc_generative_metrics(self, preds, target) -> Dict:
return calculate_rouge(preds, target)
def _generative_step(self, batch: dict) -> dict:
t0 = time.time()
# parser.add_argument('--eval_max_gen_length', type=int, default=None, help='never generate more than n tokens')
generated_ids = self.model.generate(
batch["input_ids"],
attention_mask=batch["attention_mask"],
use_cache=True,
decoder_start_token_id=self.decoder_start_token_id,
num_beams=self.eval_beams,
max_length=self.eval_max_length,
)
gen_time = (time.time() - t0) / batch["input_ids"].shape[0]
preds: List[str] = self.ids_to_clean_text(generated_ids)
target: List[str] = self.ids_to_clean_text(batch["labels"])
loss_tensors = self._step(batch)
base_metrics = {name: loss for name, loss in zip(self.loss_names, loss_tensors)}
rouge: Dict = self.calc_generative_metrics(preds, target)
summ_len = np.mean(lmap(len, generated_ids))
base_metrics.update(gen_time=gen_time, gen_len=summ_len, preds=preds, target=target, **rouge)
return base_metrics
def test_step(self, batch, batch_idx):
return self._generative_step(batch)
def test_epoch_end(self, outputs):
return self.validation_epoch_end(outputs, prefix="test")
def get_dataset(self, type_path) -> Seq2SeqDataset:
n_obs = self.n_obs[type_path]
max_target_length = self.target_lens[type_path]
dataset = self.dataset_class(
self.tokenizer,
type_path=type_path,
n_obs=n_obs,
max_target_length=max_target_length,
**self.dataset_kwargs,
)
return dataset
def get_dataloader(self, type_path: str, batch_size: int, shuffle: bool = False) -> DataLoader:
dataset = self.get_dataset(type_path)
if self.hparams.sortish_sampler and type_path != "test":
sampler = dataset.make_sortish_sampler(batch_size, distributed=self.hparams.gpus > 1)
return DataLoader(
dataset,
batch_size=batch_size,
collate_fn=dataset.collate_fn,
shuffle=False,
num_workers=self.num_workers,
sampler=sampler,
)
elif self.hparams.max_tokens_per_batch is not None and type_path != "test":
batch_sampler = dataset.make_dynamic_sampler(
self.hparams.max_tokens_per_batch, distributed=self.hparams.gpus > 1
)
return DataLoader(
dataset,
batch_sampler=batch_sampler,
collate_fn=dataset.collate_fn,
# shuffle=False,
num_workers=self.num_workers,
# batch_size=None,
)
else:
return DataLoader(
dataset,
batch_size=batch_size,
collate_fn=dataset.collate_fn,
shuffle=shuffle,
num_workers=self.num_workers,
sampler=None,
)
def train_dataloader(self) -> DataLoader:
dataloader = self.get_dataloader("train", batch_size=self.hparams.train_batch_size, shuffle=True)
return dataloader
def val_dataloader(self) -> DataLoader:
return self.get_dataloader("val", batch_size=self.hparams.eval_batch_size)
def test_dataloader(self) -> DataLoader:
return self.get_dataloader("test", batch_size=self.hparams.eval_batch_size)
@staticmethod
def add_model_specific_args(parser, root_dir):
BaseTransformer.add_model_specific_args(parser, root_dir)
add_generic_args(parser, root_dir)
parser.add_argument(
"--max_source_length",
default=1024,
type=int,
help="The maximum total input sequence length after tokenization. Sequences longer "
"than this will be truncated, sequences shorter will be padded.",
)
parser.add_argument(
"--max_target_length",
default=56,
type=int,
help="The maximum total input sequence length after tokenization. Sequences longer "
"than this will be truncated, sequences shorter will be padded.",
)
parser.add_argument(
"--val_max_target_length",
default=142, # these defaults are optimized for CNNDM. For xsum, see README.md.
type=int,
help="The maximum total input sequence length after tokenization. Sequences longer "
"than this will be truncated, sequences shorter will be padded.",
)
parser.add_argument(
"--test_max_target_length",
default=142,
type=int,
help="The maximum total input sequence length after tokenization. Sequences longer "
"than this will be truncated, sequences shorter will be padded.",
)
parser.add_argument("--freeze_encoder", action="store_true")
parser.add_argument("--freeze_embeds", action="store_true")
parser.add_argument("--sortish_sampler", action="store_true", default=False)
parser.add_argument("--max_tokens_per_batch", type=int, default=None)
parser.add_argument("--logger_name", type=str, choices=["default", "wandb", "wandb_shared"], default="default")
parser.add_argument("--n_train", type=int, default=-1, required=False, help="# examples. -1 means use all.")
parser.add_argument("--n_val", type=int, default=500, required=False, help="# examples. -1 means use all.")
parser.add_argument("--n_test", type=int, default=-1, required=False, help="# examples. -1 means use all.")
parser.add_argument(
"--task", type=str, default="summarization", required=False, help="# examples. -1 means use all."
)
parser.add_argument("--label_smoothing", type=float, default=0.0, required=False)
parser.add_argument("--src_lang", type=str, default="", required=False)
parser.add_argument("--tgt_lang", type=str, default="", required=False)
parser.add_argument("--eval_beams", type=int, default=None, required=False)
parser.add_argument(
"--val_metric", type=str, default=None, required=False, choices=["bleu", "rouge2", "loss", None]
)
parser.add_argument("--eval_max_gen_length", type=int, default=None, help="never generate more than n tokens")
parser.add_argument("--save_top_k", type=int, default=1, required=False, help="How many checkpoints to save")
parser.add_argument(
"--early_stopping_patience",
type=int,
default=-1,
required=False,
help="-1 means never early stop. early_stopping_patience is measured in validation checks, not epochs. So val_check_interval will effect it.",
)
return parser
class TranslationModule(SummarizationModule):
mode = "translation"
loss_names = ["loss"]
metric_names = ["bleu"]
default_val_metric = "bleu"
def __init__(self, hparams, **kwargs):
super().__init__(hparams, **kwargs)
self.dataset_kwargs["src_lang"] = hparams.src_lang
self.dataset_kwargs["tgt_lang"] = hparams.tgt_lang
def calc_generative_metrics(self, preds, target) -> dict:
return calculate_bleu(preds, target)
def main(args, model=None) -> SummarizationModule:
Path(args.output_dir).mkdir(exist_ok=True)
if len(os.listdir(args.output_dir)) > 3 and args.do_train:
raise ValueError("Output directory ({}) already exists and is not empty.".format(args.output_dir))
if model is None:
if "summarization" in args.task:
model: SummarizationModule = SummarizationModule(args)
else:
model: SummarizationModule = TranslationModule(args)
dataset = Path(args.data_dir).name
if (
args.logger_name == "default"
or args.fast_dev_run
or str(args.output_dir).startswith("/tmp")
or str(args.output_dir).startswith("/var")
):
logger = True # don't pollute wandb logs unnecessarily
elif args.logger_name == "wandb":
from pytorch_lightning.loggers import WandbLogger
project = os.environ.get("WANDB_PROJECT", dataset)
logger = WandbLogger(name=model.output_dir.name, project=project)
elif args.logger_name == "wandb_shared":
from pytorch_lightning.loggers import WandbLogger
logger = WandbLogger(name=model.output_dir.name, project=f"hf_{dataset}")
if args.early_stopping_patience >= 0:
es_callback = get_early_stopping_callback(model.val_metric, args.early_stopping_patience)
else:
es_callback = False
lower_is_better = args.val_metric == "loss"
trainer: pl.Trainer = generic_train(
model,
args,
logging_callback=Seq2SeqLoggingCallback(),
checkpoint_callback=get_checkpoint_callback(
args.output_dir, model.val_metric, args.save_top_k, lower_is_better
),
early_stopping_callback=es_callback,
logger=logger,
)
pickle_save(model.hparams, model.output_dir / "hparams.pkl")
if not args.do_predict:
return model
model.hparams.test_checkpoint = ""
checkpoints = list(sorted(glob.glob(os.path.join(args.output_dir, "*.ckpt"), recursive=True)))
if checkpoints:
model.hparams.test_checkpoint = checkpoints[-1]
trainer.resume_from_checkpoint = checkpoints[-1]
trainer.logger.log_hyperparams(model.hparams)
# test() without a model tests using the best checkpoint automatically
trainer.test()
return model
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser = pl.Trainer.add_argparse_args(parser)
parser = SummarizationModule.add_model_specific_args(parser, os.getcwd())
args = parser.parse_args()
main(args)