transformers/transformers/modeling_t5.py
2019-12-13 16:33:29 +01:00

887 lines
44 KiB
Python

# coding=utf-8
# Copyright 2018 Mesh TensorFlow authors, T5 Authors and HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" PyTorch T5 model. """
from __future__ import absolute_import, division, print_function, unicode_literals
import json
import logging
import math
import os
import sys
import copy
import itertools
from io import open
import torch
from torch import nn
import torch.nn.functional as F
from torch.nn import CrossEntropyLoss, MSELoss
from .modeling_utils import PreTrainedModel, prune_linear_layer
from .configuration_t5 import T5Config
from .file_utils import add_start_docstrings, DUMMY_INPUTS, DUMMY_MASK
logger = logging.getLogger(__name__)
####################################################
# This dict contrains shortcut names and associated url
# for the pretrained weights provided with the models
####################################################
T5_PRETRAINED_MODEL_ARCHIVE_MAP = {
't5-small': "https://s3.amazonaws.com/models.huggingface.co/bert/t5-small-pytorch_model.bin",
't5-base': "https://s3.amazonaws.com/models.huggingface.co/bert/t5-base-pytorch_model.bin",
't5-large': "https://s3.amazonaws.com/models.huggingface.co/bert/t5-large-pytorch_model.bin",
't5-3b': "https://s3.amazonaws.com/models.huggingface.co/bert/t5-3b-pytorch_model.bin",
't5-11b': "https://s3.amazonaws.com/models.huggingface.co/bert/t5-11b-pytorch_model.bin",
}
####################################################
# This is a conversion method from TF 1.0 to PyTorch
# More details: https://medium.com/huggingface/from-tensorflow-to-pytorch-265f40ef2a28
####################################################
def load_tf_weights_in_t5(model, config, tf_checkpoint_path):
""" Load tf checkpoints in a pytorch model.
"""
try:
import re
import numpy as np
import tensorflow as tf
except ImportError:
logger.error("Loading a TensorFlow model in PyTorch, requires TensorFlow to be installed. Please see "
"https://www.tensorflow.org/install/ for installation instructions.")
raise
tf_path = os.path.abspath(tf_checkpoint_path)
logger.info("Converting TensorFlow checkpoint from {}".format(tf_path))
# Load weights from TF model
init_vars = tf.train.list_variables(tf_path)
names = []
tf_weights = {}
for name, shape in init_vars:
logger.info("Loading TF weight {} with shape {}".format(name, shape))
array = tf.train.load_variable(tf_path, name)
names.append(name)
tf_weights[name] = array
for txt_name in names:
name = txt_name.split('/')
# adam_v and adam_m are variables used in AdamWeightDecayOptimizer to calculated m and v
# which are not required for using pretrained model
if any(n in ["adam_v", "adam_m", "global_step"] for n in name):
logger.info("Skipping {}".format("/".join(name)))
tf_weights.pop(txt_name, None)
continue
if '_slot_' in name[-1]:
logger.info("Skipping {}".format("/".join(name)))
tf_weights.pop(txt_name, None)
continue
pointer = model
array = tf_weights[txt_name]
for m_name in name:
if re.fullmatch(r'[A-Za-z]+_\d+', m_name):
l = re.split(r'_(\d+)', m_name)
else:
l = [m_name]
if l[0] in ['kernel', 'scale', 'embedding']:
pointer = getattr(pointer, 'weight')
# elif l[0] == 'scale':
# pointer = getattr(pointer, 'weight')
# elif l[0] == 'output_bias' or l[0] == 'beta':
# pointer = getattr(pointer, 'bias')
# elif l[0] == 'squad':
# pointer = getattr(pointer, 'classifier')
else:
try:
pointer = getattr(pointer, l[0])
except AttributeError:
logger.info("Skipping {}".format("/".join(name)))
continue
if len(l) >= 2:
num = int(l[1])
pointer = pointer[num]
if l[0] not in ['kernel', 'scale', 'embedding']:
pointer = getattr(pointer, 'weight')
if l[0] != 'embedding':
logger.info("Transposing numpy weight of shape {} for {}".format(array.shape, name))
array = np.transpose(array)
try:
assert pointer.shape == array.shape
except AssertionError as e:
e.args += (pointer.shape, array.shape)
raise
logger.info("Initialize PyTorch weight {}".format(name))
pointer.data = torch.from_numpy(array.astype(np.float32))
tf_weights.pop(txt_name, None)
logger.info("Weights not copied to PyTorch model: {}".format(', '.join(tf_weights.keys())))
# logger.info("Weights not copied to PyTorch model: {}".format(', '.join(tf_weights.keys())))
return model
####################################################
# PyTorch Models are constructed by sub-classing
# - torch.nn.Module for the layers and
# - PreTrainedModel for the models (it-self a sub-class of torch.nn.Module)
####################################################
class T5LayerNorm(nn.Module):
def __init__(self, hidden_size, eps=1e-6):
""" Construct a layernorm module in the T5 style
No bias and no substraction of mean.
"""
super(T5LayerNorm, self).__init__()
self.weight = nn.Parameter(torch.ones(hidden_size))
self.variance_epsilon = eps
def forward(self, x):
variance = x.pow(2).mean(-1, keepdim=True)
x = x / torch.sqrt(variance + self.variance_epsilon)
return self.weight * x
class T5DenseReluDense(nn.Module):
def __init__(self, config):
super(T5DenseReluDense, self).__init__()
self.wi = nn.Linear(config.d_model, config.d_ff, bias=False)
self.wo = nn.Linear(config.d_ff, config.d_model, bias=False)
self.dropout = nn.Dropout(config.dropout_rate)
def forward(self, hidden_states):
h = self.wi(hidden_states)
h = F.relu(h)
h = self.dropout(h)
h = self.wo(h)
return h
class T5LayerFF(nn.Module):
def __init__(self, config):
super(T5LayerFF, self).__init__()
self.DenseReluDense = T5DenseReluDense(config)
self.layer_norm = T5LayerNorm(config.d_model, eps=config.layer_norm_epsilon)
self.dropout = nn.Dropout(config.dropout_rate)
def forward(self, hidden_states):
norm_x = self.layer_norm(hidden_states)
y = self.DenseReluDense(norm_x)
layer_output = hidden_states + self.dropout(y)
return layer_output
class T5Attention(nn.Module):
NEW_ID = itertools.count()
def __init__(self, config, has_relative_attention_bias=False):
super(T5Attention, self).__init__()
self.layer_id = next(T5Attention.NEW_ID)
self.is_decoder = config.is_decoder
self.has_relative_attention_bias = has_relative_attention_bias
self.output_attentions = config.output_attentions
self.relative_attention_num_buckets = config.relative_attention_num_buckets
self.d_model = config.d_model
self.d_kv = config.d_kv
self.n_heads = config.num_heads
self.dropout = config.dropout_rate
self.inner_dim = self.n_heads * self.d_kv
# Mesh TensorFlow initialization to avoid scaling before softmax
self.q = nn.Linear(self.d_model, self.inner_dim, bias=False)
self.k = nn.Linear(self.d_model, self.inner_dim, bias=False)
self.v = nn.Linear(self.d_model, self.inner_dim, bias=False)
self.o = nn.Linear(self.inner_dim, self.d_model, bias=False)
if self.has_relative_attention_bias:
self.relative_attention_bias = nn.Embedding(self.relative_attention_num_buckets, self.n_heads)
self.pruned_heads = set()
def prune_heads(self, heads):
if len(heads) == 0:
return
mask = torch.ones(self.n_heads, self.d_kv)
heads = set(heads) - self.pruned_heads
for head in heads:
head -= sum(1 if h < head else 0 for h in self.pruned_heads)
mask[head] = 0
mask = mask.view(-1).contiguous().eq(1)
index = torch.arange(len(mask))[mask].long()
# Prune linear layers
self.q = prune_linear_layer(self.q, index)
self.k = prune_linear_layer(self.k, index)
self.v = prune_linear_layer(self.v, index)
self.o = prune_linear_layer(self.o, index, dim=1)
# Update hyper params
self.n_heads = self.n_heads - len(heads)
self.inner_dim = self.d_kv * self.n_heads
self.pruned_heads = self.pruned_heads.union(heads)
@staticmethod
def _relative_position_bucket(relative_position,
bidirectional=True,
num_buckets=32,
max_distance=128):
"""
Adapted from Mesh Tensorflow:
https://github.com/tensorflow/mesh/blob/0cb87fe07da627bf0b7e60475d59f95ed6b5be3d/mesh_tensorflow/transformer/transformer_layers.py#L593
Translate relative position to a bucket number for relative attention.
The relative position is defined as memory_position - query_position, i.e.
the distance in tokens from the attending position to the attended-to
position. If bidirectional=False, then positive relative positions are
invalid.
We use smaller buckets for small absolute relative_position and larger buckets
for larger absolute relative_positions. All relative positions >=max_distance
map to the same bucket. All relative positions <=-max_distance map to the
same bucket. This should allow for more graceful generalization to longer
sequences than the model has been trained on.
Args:
relative_position: an int32 Tensor
bidirectional: a boolean - whether the attention is bidirectional
num_buckets: an integer
max_distance: an integer
Returns:
a Tensor with the same shape as relative_position, containing int32
values in the range [0, num_buckets)
"""
ret = 0
n = -relative_position
if bidirectional:
num_buckets //= 2
ret += (n < 0).to(torch.long) * num_buckets # mtf.to_int32(mtf.less(n, 0)) * num_buckets
n = torch.abs(n)
else:
n = torch.max(n, torch.zeros_like(n))
# now n is in the range [0, inf)
# half of the buckets are for exact increments in positions
max_exact = num_buckets // 2
is_small = (n < max_exact)
# The other half of the buckets are for logarithmically bigger bins in positions up to max_distance
val_if_large = max_exact + (
torch.log(n.float() / max_exact)
/ math.log(max_distance / max_exact) * (num_buckets - max_exact)).to(torch.long)
val_if_large = torch.min(val_if_large, torch.full_like(val_if_large, num_buckets - 1))
ret += torch.where(is_small, n, val_if_large)
return ret
def compute_bias(self, qlen, klen):
""" Compute binned relative position bias """
context_position = torch.arange(qlen, dtype=torch.long)[:, None]
memory_position = torch.arange(klen, dtype=torch.long)[None, :]
relative_position = memory_position - context_position # shape (qlen, klen)
rp_bucket = self._relative_position_bucket(relative_position, # shape (qlen, klen)
bidirectional=not self.is_decoder,
num_buckets=self.relative_attention_num_buckets)
values = self.relative_attention_bias(rp_bucket) # shape (qlen, klen, num_heads)
values = values.permute([2, 0, 1]).unsqueeze(0) # shape (1, num_heads, qlen, klen)
return values
def forward(self, input, mask=None, kv=None, position_bias=None, cache=None, head_mask=None):
"""
Self-attention (if kv is None) or attention over source sentence (provided by kv).
"""
# Input is (bs, qlen, dim)
# Mask is (bs, klen) (non-causal) or (bs, klen, klen)
bs, qlen, dim = input.size()
if kv is None:
klen = qlen if cache is None else cache['slen'] + qlen
else:
klen = kv.size(1)
def shape(x):
""" projection """
return x.view(bs, -1, self.n_heads, self.d_kv).transpose(1, 2)
def unshape(x):
""" compute context """
return x.transpose(1, 2).contiguous().view(bs, -1, self.inner_dim)
q = shape(self.q(input)) # (bs, n_heads, qlen, dim_per_head)
if kv is None:
k = shape(self.k(input)) # (bs, n_heads, qlen, dim_per_head)
v = shape(self.v(input)) # (bs, n_heads, qlen, dim_per_head)
elif cache is None or self.layer_id not in cache:
k = v = kv
k = shape(self.k(k)) # (bs, n_heads, qlen, dim_per_head)
v = shape(self.v(v)) # (bs, n_heads, qlen, dim_per_head)
if cache is not None:
if self.layer_id in cache:
if kv is None:
k_, v_ = cache[self.layer_id]
k = torch.cat([k_, k], dim=2) # (bs, n_heads, klen, dim_per_head)
v = torch.cat([v_, v], dim=2) # (bs, n_heads, klen, dim_per_head)
else:
k, v = cache[self.layer_id]
cache[self.layer_id] = (k, v)
# q = q / math.sqrt(dim_per_head) # No scaling in T5
scores = torch.einsum('bnqd,bnkd->bnqk', q, k) # (bs, n_heads, qlen, klen)
if position_bias is None:
if not self.has_relative_attention_bias:
raise ValueError("No position_bias provided and no weights to compute position_bias")
position_bias = self.compute_bias(qlen, klen)
if mask is not None:
position_bias = position_bias + mask # (bs, n_heads, qlen, klen)
scores += position_bias
weights = F.softmax(scores.float(), dim=-1).type_as(scores) # (bs, n_heads, qlen, klen)
weights = F.dropout(weights, p=self.dropout, training=self.training) # (bs, n_heads, qlen, klen)
# Mask heads if we want to
if head_mask is not None:
weights = weights * head_mask
context = torch.matmul(weights, v) # (bs, n_heads, qlen, dim_per_head)
context = unshape(context) # (bs, qlen, dim)
context = self.o(context)
outputs = (context,)
if self.output_attentions:
outputs = outputs + (weights,)
if self.has_relative_attention_bias:
outputs = outputs + (position_bias,)
return outputs
class T5LayerSelfAttention(nn.Module):
def __init__(self, config, has_relative_attention_bias=False):
super(T5LayerSelfAttention, self).__init__()
self.SelfAttention = T5Attention(config, has_relative_attention_bias=has_relative_attention_bias)
self.layer_norm = T5LayerNorm(config.d_model, eps=config.layer_norm_epsilon)
self.dropout = nn.Dropout(config.dropout_rate)
def forward(self, hidden_states, attention_mask=None, position_bias=None, head_mask=None):
norm_x = self.layer_norm(hidden_states)
attention_output = self.SelfAttention(norm_x,
mask=attention_mask,
position_bias=position_bias,
head_mask=head_mask)
y = attention_output[0]
layer_output = hidden_states + self.dropout(y)
outputs = (layer_output,) + attention_output[1:] # add attentions if we output them
return outputs
class T5LayerCrossAttention(nn.Module):
def __init__(self, config, has_relative_attention_bias=False):
super(T5LayerCrossAttention, self).__init__()
self.EncDecAttention = T5Attention(config, has_relative_attention_bias=has_relative_attention_bias)
self.layer_norm = T5LayerNorm(config.d_model, eps=config.layer_norm_epsilon)
self.dropout = nn.Dropout(config.dropout_rate)
def forward(self, hidden_states, kv, attention_mask=None, position_bias=None, head_mask=None):
norm_x = self.layer_norm(hidden_states)
attention_output = self.EncDecAttention(norm_x,
mask=attention_mask,
kv=kv,
position_bias=position_bias,
head_mask=head_mask)
y = attention_output[0]
layer_output = hidden_states + self.dropout(y)
outputs = (layer_output,) + attention_output[1:] # add attentions if we output them
return outputs
class T5Block(nn.Module):
def __init__(self, config, has_relative_attention_bias=False):
super(T5Block, self).__init__()
self.is_decoder = config.is_decoder
self.layer = nn.ModuleList()
self.layer.append(T5LayerSelfAttention(config, has_relative_attention_bias=has_relative_attention_bias))
if self.is_decoder:
self.layer.append(T5LayerCrossAttention(config, has_relative_attention_bias=has_relative_attention_bias))
self.layer.append(T5LayerFF(config))
else:
self.layer.append(T5LayerFF(config))
def forward(self, hidden_states, attention_mask=None, position_bias=None,
encoder_hidden_states=None, encoder_attention_mask=None, encoder_decoder_position_bias=None,
head_mask=None):
self_attention_outputs = self.layer[0](hidden_states,
attention_mask=attention_mask,
position_bias=position_bias,
head_mask=head_mask)
hidden_states = self_attention_outputs[0]
outputs = self_attention_outputs[1:] # Keep self-attention outputs and relative position weights
if not self.is_decoder:
hidden_states = self.layer[1](hidden_states)
else:
cross_attention_outputs = self.layer[1](hidden_states,
kv=encoder_hidden_states,
attention_mask=encoder_attention_mask,
position_bias=encoder_decoder_position_bias,
head_mask=head_mask)
hidden_states = cross_attention_outputs[0]
outputs = outputs + cross_attention_outputs[1:] # Keep cross-attention outputs and relative position weights
hidden_states = self.layer[2](hidden_states)
outputs = (hidden_states,) + outputs # add attentions if we output them
return outputs # hidden-states, (self-attention weights), (self-attention position bias), (cross-attention weights), (cross-attention position bias)
class T5PreTrainedModel(PreTrainedModel):
""" An abstract class to handle weights initialization and
a simple interface for dowloading and loading pretrained models.
"""
config_class = T5Config
pretrained_model_archive_map = T5_PRETRAINED_MODEL_ARCHIVE_MAP
load_tf_weights = load_tf_weights_in_t5
base_model_prefix = "transformer"
@property
def dummy_inputs(self):
input_ids = torch.tensor(DUMMY_INPUTS)
input_mask = torch.tensor(DUMMY_MASK)
dummy_inputs = {'decoder_input_ids': input_ids,
'encoder_input_ids': input_ids,
'decoder_attention_mask': input_mask}
return dummy_inputs
def _init_weights(self, module):
""" Initialize the weights """
factor = self.config.initializer_factor # Used for testing weights initialization
if isinstance(module, T5LayerNorm):
module.weight.data.fill_(factor*1.0)
elif isinstance(module, (T5Model, T5WithLMHeadModel)):
# Mesh TensorFlow embeddings initialization
# See https://github.com/tensorflow/mesh/blob/fa19d69eafc9a482aff0b59ddd96b025c0cb207d/mesh_tensorflow/layers.py#L1624
module.shared.weight.data.normal_(mean=0.0, std=factor*1.0)
elif isinstance(module, T5DenseReluDense):
# Mesh TensorFlow FF initialization
# See https://github.com/tensorflow/mesh/blob/master/mesh_tensorflow/transformer/transformer_layers.py#L56
# and https://github.com/tensorflow/mesh/blob/fa19d69eafc9a482aff0b59ddd96b025c0cb207d/mesh_tensorflow/layers.py#L89
module.wi.weight.data.normal_(mean=0.0, std=factor*((self.config.d_model) ** -0.5))
if hasattr(module.wi, 'bias') and module.wi.bias is not None:
module.wi.bias.data.zero_()
module.wo.weight.data.normal_(mean=0.0, std=factor*((self.config.d_ff) ** -0.5))
if hasattr(module.wo, 'bias') and module.wo.bias is not None:
module.wo.bias.data.zero_()
elif isinstance(module, T5Attention):
# Mesh TensorFlow attention initialization to avoid scaling before softmax
# See https://github.com/tensorflow/mesh/blob/fa19d69eafc9a482aff0b59ddd96b025c0cb207d/mesh_tensorflow/transformer/attention.py#L136
d_model = self.config.d_model
d_kv = self.config.d_kv
n_heads = self.config.num_heads
module.q.weight.data.normal_(mean=0.0, std=factor*((d_model * d_kv) ** -0.5))
module.k.weight.data.normal_(mean=0.0, std=factor*(d_model ** -0.5))
module.v.weight.data.normal_(mean=0.0, std=factor*(d_model ** -0.5))
module.o.weight.data.normal_(mean=0.0, std=factor*((n_heads * d_kv) ** -0.5))
if module.has_relative_attention_bias:
module.relative_attention_bias.weight.data.normal_(mean=0.0, std=factor*((d_model) ** -0.5))
class T5Stack(T5PreTrainedModel):
def __init__(self, config):
super(T5Stack, self).__init__(config)
self.output_attentions = config.output_attentions
self.output_hidden_states = config.output_hidden_states
self.is_decoder = config.is_decoder
self.block = nn.ModuleList([T5Block(config, has_relative_attention_bias=bool(i == 0))
for i in range(config.num_layers)])
self.final_layer_norm = T5LayerNorm(config.d_model, eps=config.layer_norm_epsilon)
self.dropout = nn.Dropout(config.dropout_rate)
self.init_weights()
def forward(self,
hidden_states,
attention_mask=None,
encoder_hidden_states=None,
encoder_attention_mask=None,
head_mask=None):
batch_size, seq_length = hidden_states.shape[0], hidden_states.shape[1]
if attention_mask is None:
attention_mask = torch.ones(batch_size, seq_length).to(hidden_states.device)
if self.is_decoder and encoder_attention_mask is None:
encoder_seq_length = encoder_hidden_states.shape[1]
encoder_attention_mask = torch.ones(batch_size, encoder_seq_length).to(hidden_states.device)
# We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
# ourselves in which case we just need to make it broadcastable to all heads.
if attention_mask.dim() == 3:
extended_attention_mask = attention_mask[:, None, :, :]
elif attention_mask.dim() == 2:
# Provided a padding mask of dimensions [batch_size, seq_length]
# - if the model is a decoder, apply a causal mask in addition to the padding mask
# - if the model is an encoder, make the mask broadcastable to [batch_size, num_heads, seq_length, seq_length]
if self.config.is_decoder:
seq_ids = torch.arange(seq_length, device=hidden_states.device)
causal_mask = seq_ids[None, None, :].repeat(batch_size, seq_length, 1) <= seq_ids[None, :, None]
causal_mask = causal_mask.to(attention_mask)
extended_attention_mask = causal_mask[:, None, :, :] * attention_mask[:, None, None, :]
else:
extended_attention_mask = attention_mask[:, None, None, :]
# Since attention_mask is 1.0 for positions we want to attend and 0.0 for
# masked positions, this operation will create a tensor which is 0.0 for
# positions we want to attend and -1e9 for masked positions.
# Since we are adding it to the raw scores before the softmax, this is
# effectively the same as removing these entirely.
# T5 has a mask that can compare sequence ids, we can simulate this here with this transposition
# Cf. https://github.com/tensorflow/mesh/blob/8d2465e9bc93129b913b5ccc6a59aa97abd96ec6/mesh_tensorflow/transformer/transformer_layers.py#L270
# extended_attention_mask = (extended_attention_mask == extended_attention_mask.transpose(-1, -2))
extended_attention_mask = extended_attention_mask.to(dtype=next(self.parameters()).dtype) # fp16 compatibility
extended_attention_mask = (1.0 - extended_attention_mask) * -1e9
if self.is_decoder:
# If a 2D ou 3D attention mask is provided for the cross-attention
# we need to make broadcastabe to [batch_size, num_heads, seq_length, seq_length]
if encoder_attention_mask.dim() == 3:
encoder_extended_attention_mask = encoder_attention_mask[:, None, :, :]
if encoder_attention_mask.dim() == 2:
encoder_extended_attention_mask = encoder_attention_mask[:, None, None, :]
# T5 has a mask that can compare sequence ids, we can simulate this here with this transposition
# Cf. https://github.com/tensorflow/mesh/blob/8d2465e9bc93129b913b5ccc6a59aa97abd96ec6/mesh_tensorflow/transformer/transformer_layers.py#L270
# encoder_extended_attention_mask = (encoder_extended_attention_mask == encoder_extended_attention_mask.transpose(-1, -2))
encoder_extended_attention_mask = encoder_extended_attention_mask.to(dtype=next(self.parameters()).dtype) # fp16 compatibility
encoder_extended_attention_mask = (1.0 - encoder_extended_attention_mask) * -1e9
else:
encoder_extended_attention_mask = None
# Prepare head mask if needed
# 1.0 in head_mask indicate we keep the head
# attention_probs has shape bsz x n_heads x N x N
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
if head_mask is not None:
if head_mask.dim() == 1:
head_mask = head_mask.unsqueeze(0).unsqueeze(0).unsqueeze(-1).unsqueeze(-1)
head_mask = head_mask.expand(self.config.num_layers, -1, -1, -1, -1)
elif head_mask.dim() == 2:
head_mask = head_mask.unsqueeze(1).unsqueeze(-1).unsqueeze(-1) # We can specify head_mask for each layer
head_mask = head_mask.to(dtype=next(self.parameters()).dtype) # switch to fload if need + fp16 compatibility
else:
head_mask = [None] * self.config.num_layers
all_hidden_states = ()
all_attentions = ()
position_bias = None
encoder_decoder_position_bias = None
hidden_states = self.dropout(hidden_states)
for i, layer_module in enumerate(self.block):
if self.output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
layer_outputs = layer_module(hidden_states,
attention_mask=extended_attention_mask,
position_bias=position_bias,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_extended_attention_mask,
encoder_decoder_position_bias=encoder_decoder_position_bias,
head_mask=head_mask[i])
# layer_outputs is a tuple with:
# hidden-states, (self-attention weights), (self-attention position bias), (cross-attention weights), (cross-attention position bias)
hidden_states = layer_outputs[0]
if i == 0:
# We share the position biases between the layers - the first layer store them
# layer_outputs = hidden-states, (self-attention weights), (self-attention position bias), (cross-attention weights), (cross-attention position bias)
position_bias = layer_outputs[2 if self.output_attentions else 1]
if self.is_decoder:
encoder_decoder_position_bias = layer_outputs[4 if self.output_attentions else 2]
if self.output_attentions:
all_attentions = all_attentions + (layer_outputs[1],) # We keep only self-attention weights for now
hidden_states = self.final_layer_norm(hidden_states)
layer_output = self.dropout(hidden_states)
# Add last layer
if self.output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
outputs = (hidden_states,)
if self.output_hidden_states:
outputs = outputs + (all_hidden_states,)
if self.output_attentions:
outputs = outputs + (all_attentions,)
return outputs # last-layer hidden state, (all hidden states), (all attentions)
T5_START_DOCSTRING = r""" The T5 model was proposed in
`Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer`_
by Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi Zhou, Wei Li, Peter J. Liu.
It's an encoder decoder transformer pre-trained in a text-to-text denoising generative setting.
This model is a PyTorch `torch.nn.Module`_ sub-class. Use it as a regular PyTorch Module and
refer to the PyTorch documentation for all matter related to general usage and behavior.
.. _`Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer`:
https://arxiv.org/abs/1910.10683
.. _`torch.nn.Module`:
https://pytorch.org/docs/stable/nn.html#module
Parameters:
config (:class:`~transformers.T5Config`): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the configuration.
Check out the :meth:`~transformers.PreTrainedModel.from_pretrained` method to load the model weights.
"""
T5_INPUTS_DOCSTRING = r"""
Inputs:
**input_ids**: ``torch.LongTensor`` of shape ``(batch_size, sequence_length)``:
Indices of input sequence tokens in the vocabulary.
To match pre-training, T5 input sequence should be formatted with [CLS] and [SEP] tokens as follows:
(a) For sequence pairs:
``tokens: [CLS] is this jack ##son ##ville ? [SEP] no it is not . [SEP]``
(b) For single sequences:
``tokens: [CLS] the dog is hairy . [SEP]``
T5 is a model with relative position embeddings so you should be able to pad the inputs on
the right or the left.
Indices can be obtained using :class:`transformers.T5Tokenizer`.
See :func:`transformers.PreTrainedTokenizer.encode` and
:func:`transformers.PreTrainedTokenizer.convert_tokens_to_ids` for details.
**attention_mask**: (`optional`) ``torch.FloatTensor`` of shape ``(batch_size, sequence_length)``:
Mask to avoid performing attention on padding token indices.
Mask values selected in ``[0, 1]``:
``1`` for tokens that are NOT MASKED, ``0`` for MASKED tokens.
**head_mask**: (`optional`) ``torch.FloatTensor`` of shape ``(num_heads,)`` or ``(num_layers, num_heads)``:
Mask to nullify selected heads of the self-attention modules.
Mask values selected in ``[0, 1]``:
``1`` indicates the head is **not masked**, ``0`` indicates the head is **masked**.
"""
@add_start_docstrings("The bare T5 Model transformer outputting raw hidden-states"
"without any specific head on top.",
T5_START_DOCSTRING, T5_INPUTS_DOCSTRING)
class T5Model(T5PreTrainedModel):
r"""
Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs:
**last_hidden_state**: ``torch.FloatTensor`` of shape ``(batch_size, sequence_length, hidden_size)``
Sequence of hidden-states at the output of the last layer of the model.
**hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``)
list of ``torch.FloatTensor`` (one for the output of each layer + the output of the embeddings)
of shape ``(batch_size, sequence_length, hidden_size)``:
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
**attentions**: (`optional`, returned when ``config.output_attentions=True``)
list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``:
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
Examples::
tokenizer = T5Tokenizer.from_pretrained('t5-small')
model = T5Model.from_pretrained('t5-small')
input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1
outputs = model(input_ids)
last_hidden_states = outputs[0] # The last hidden-state is the first element of the output tuple
"""
def __init__(self, config):
super(T5Model, self).__init__(config)
self.shared = nn.Embedding(config.vocab_size, config.d_model)
encoder_config = copy.deepcopy(config)
self.encoder = T5Stack(encoder_config)
decoder_config = copy.deepcopy(config)
decoder_config.is_decoder = True
self.decoder = T5Stack(decoder_config)
self.init_weights()
def get_input_embeddings(self):
return self.shared
def set_input_embeddings(self, new_embeddings):
self.shared = new_embeddings
def _prune_heads(self, heads_to_prune):
""" Prunes heads of the model.
heads_to_prune: dict of {layer_num: list of heads to prune in this layer}
See base class PreTrainedModel
"""
for layer, heads in heads_to_prune.items():
self.encoder.layer[layer].attention.prune_heads(heads)
def forward(self, **kwargs):
# keyword arguments come in 3 flavors: encoder-specific (prefixed by
# `encoder_`), decoder-specific (prefixed by `decoder_`) and those
# that apply to the model as whole.
# We let the specific kwargs override the common ones in case of conflict.
kwargs_common = dict((k, v) for k, v in kwargs.items()
if not k.startswith("encoder_") and not k.startswith("decoder_"))
kwargs_encoder = kwargs_common.copy()
kwargs_decoder = kwargs_common.copy()
kwargs_encoder.update(dict((k[len("encoder_"):], v) for k, v in kwargs.items() if k.startswith("encoder_")))
kwargs_decoder.update(dict((k[len("decoder_"):], v) for k, v in kwargs.items() if k.startswith("decoder_")))
# Encode if needed (training, first prediction pass)
encoder_hidden_states = kwargs_encoder.pop("hidden_states", None)
encoder_attention_mask = kwargs_encoder.get("attention_mask", None)
if encoder_hidden_states is None:
# Convert encoder inputs in embeddings if needed
hidden_states = kwargs_encoder.pop("inputs_embeds", None)
if hidden_states is None:
encoder_inputs_ids = kwargs_encoder.pop("input_ids")
hidden_states = self.shared(encoder_inputs_ids) # Convert inputs in embeddings
if encoder_attention_mask is not None:
# Apply masking
encoder_attention_mask = (encoder_attention_mask != 0).to(hidden_states)
hidden_states = hidden_states * encoder_attention_mask.unsqueeze(-1)
encoder_outputs = self.encoder(hidden_states, **kwargs_encoder)
encoder_hidden_states = encoder_outputs[0]
else:
encoder_outputs = ()
# Decode
# Convert decoder inputs in embeddings if needed
hidden_states = kwargs_decoder.pop("inputs_embeds", None)
if hidden_states is None:
decoder_inputs_ids = kwargs_decoder.pop("input_ids")
hidden_states = self.shared(decoder_inputs_ids)
kwargs_decoder["encoder_hidden_states"] = encoder_hidden_states
kwargs_decoder["encoder_attention_mask"] = encoder_attention_mask
decoder_outputs = self.decoder(hidden_states, **kwargs_decoder)
return decoder_outputs + encoder_outputs
@add_start_docstrings("""T5 Model with a `language modeling` head on top. """,
T5_START_DOCSTRING, T5_INPUTS_DOCSTRING)
class T5WithLMHeadModel(T5PreTrainedModel):
r"""
**lm_labels**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size, sequence_length)``:
Labels for computing the masked language modeling loss.
Indices should be in ``[-1, 0, ..., config.vocab_size]`` (see ``input_ids`` docstring)
Tokens with indices set to ``-1`` are ignored (masked), the loss is only computed for the tokens with labels
in ``[0, ..., config.vocab_size]``
Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs:
**loss**: (`optional`, returned when ``lm_labels`` is provided) ``torch.FloatTensor`` of shape ``(1,)``:
Masked language modeling loss.
**prediction_scores**: ``torch.FloatTensor`` of shape ``(batch_size, sequence_length, config.vocab_size)``
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
**hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``)
list of ``torch.FloatTensor`` (one for the output of each layer + the output of the embeddings)
of shape ``(batch_size, sequence_length, hidden_size)``:
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
**attentions**: (`optional`, returned when ``config.output_attentions=True``)
list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``:
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
Examples::
tokenizer = T5Tokenizer.from_pretrained('t5-small')
model = T5WithLMHeadModel.from_pretrained('t5-small')
input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1
outputs = model(input_ids, lm_labels=input_ids)
loss, prediction_scores = outputs[:2]
"""
def __init__(self, config):
super(T5WithLMHeadModel, self).__init__(config)
self.model_dim = config.d_model
self.shared = nn.Embedding(config.vocab_size, config.d_model)
encoder_config = copy.deepcopy(config)
self.encoder = T5Stack(encoder_config)
decoder_config = copy.deepcopy(config)
decoder_config.is_decoder = True
self.decoder = T5Stack(decoder_config)
self.lm_head = nn.Linear(config.d_model, config.vocab_size, bias=False)
self.init_weights()
def get_input_embeddings(self):
return self.shared
def set_input_embeddings(self, new_embeddings):
self.shared = new_embeddings
def get_output_embeddings(self):
return self.lm_head
def forward(self, **kwargs):
# keyword arguments come in 3 flavors: encoder-specific (prefixed by
# `encoder_`), decoder-specific (prefixed by `decoder_`) and those
# that apply to the model as whole.
# We let the specific kwargs override the common ones in case of conflict.
lm_labels = kwargs.pop('decoder_lm_labels', None)
kwargs_common = dict((k, v) for k, v in kwargs.items()
if not k.startswith("encoder_") and not k.startswith("decoder_"))
kwargs_encoder = kwargs_common.copy()
kwargs_decoder = kwargs_common.copy()
kwargs_encoder.update(dict((k[len("encoder_"):], v) for k, v in kwargs.items() if k.startswith("encoder_")))
kwargs_decoder.update(dict((k[len("decoder_"):], v) for k, v in kwargs.items() if k.startswith("decoder_")))
# Encode if needed (training, first prediction pass)
encoder_hidden_states = kwargs_encoder.pop("hidden_states", None)
if encoder_hidden_states is None:
# Convert encoder inputs in embeddings if needed
hidden_states = kwargs_encoder.pop("inputs_embeds", None)
if hidden_states is None:
encoder_inputs_ids = kwargs_encoder.pop("input_ids")
hidden_states = self.shared(encoder_inputs_ids) # Convert inputs in embeddings
encoder_outputs = self.encoder(hidden_states, **kwargs_encoder)
encoder_hidden_states = encoder_outputs[0]
else:
encoder_outputs = ()
# Decode
# Convert decoder inputs in embeddings if needed
hidden_states = kwargs_decoder.pop("inputs_embeds", None)
if hidden_states is None:
decoder_inputs_ids = kwargs_decoder.pop("input_ids")
hidden_states = self.shared(decoder_inputs_ids)
kwargs_decoder["encoder_hidden_states"] = encoder_hidden_states
kwargs_decoder["encoder_attention_mask"] = kwargs_encoder.get("attention_mask", None)
decoder_outputs = self.decoder(hidden_states, **kwargs_decoder)
sequence_output = decoder_outputs[0]
# Rescale output before projecting on vocab
# See https://github.com/tensorflow/mesh/blob/fa19d69eafc9a482aff0b59ddd96b025c0cb207d/mesh_tensorflow/transformer/transformer.py#L586
sequence_output = sequence_output * (self.model_dim ** -0.5)
lm_logits = self.lm_head(sequence_output)
decoder_outputs = (lm_logits,) + decoder_outputs[1:] # Add hidden states and attention if they are here
if lm_labels is not None:
shift_logits = lm_logits[..., :-1, :].contiguous()
shift_labels = lm_labels[..., 1:].contiguous()
loss_fct = CrossEntropyLoss(ignore_index=-1)
loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)),
shift_labels.view(-1))
decoder_outputs = (loss,) + decoder_outputs # TODO(thom): Add z_loss https://github.com/tensorflow/mesh/blob/fa19d69eafc9a482aff0b59ddd96b025c0cb207d/mesh_tensorflow/layers.py#L666
return decoder_outputs + encoder_outputs