transformers/tests/models/glm4/test_modeling_glm4.py
Arthur e3eda6d188
Add glm4 (#37388)
* add changed

* Revert "add changed"

This reverts commit 0a0166a1fe.

* update with NEW MODEL class called GLM4

* update

* Update glm4.md

* Name

* style

* fix copies

* fixup test

---------

Co-authored-by: Yuxuan Zhang <2448370773@qq.com>
2025-04-09 14:02:04 +02:00

206 lines
7.8 KiB
Python

# coding=utf-8
# Copyright 2025 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Testing suite for the PyTorch Glm4 model."""
import unittest
import pytest
from transformers import AutoModelForCausalLM, AutoTokenizer, Glm4Config, is_torch_available
from transformers.testing_utils import (
require_flash_attn,
require_torch,
require_torch_large_gpu,
require_torch_sdpa,
slow,
torch_device,
)
from ...models.gemma.test_modeling_gemma import GemmaModelTest, GemmaModelTester
from ...test_configuration_common import ConfigTester
if is_torch_available():
import torch
from transformers import (
Glm4ForCausalLM,
Glm4ForSequenceClassification,
Glm4ForTokenClassification,
Glm4Model,
)
class Glm4ModelTester(GemmaModelTester):
if is_torch_available():
config_class = Glm4Config
model_class = Glm4Model
for_causal_lm_class = Glm4ForCausalLM
for_sequence_class = Glm4ForSequenceClassification
for_token_class = Glm4ForTokenClassification
@require_torch
class Glm4ModelTest(GemmaModelTest, unittest.TestCase):
all_model_classes = (
(Glm4Model, Glm4ForCausalLM, Glm4ForSequenceClassification, Glm4ForTokenClassification)
if is_torch_available()
else ()
)
pipeline_model_mapping = (
{
"feature-extraction": Glm4Model,
"text-classification": Glm4ForSequenceClassification,
"token-classification": Glm4ForTokenClassification,
"text-generation": Glm4ForCausalLM,
"zero-shot": Glm4ForSequenceClassification,
}
if is_torch_available()
else {}
)
test_headmasking = False
test_pruning = False
_is_stateful = True
model_split_percents = [0.5, 0.6]
def setUp(self):
self.model_tester = Glm4ModelTester(self)
self.config_tester = ConfigTester(self, config_class=Glm4Config, hidden_size=37)
@slow
@require_torch_large_gpu
class Glm4IntegrationTest(unittest.TestCase):
input_text = ["Hello I am doing", "Hi today"]
model_id = "THUDM/glm-4-0414-9b-chat"
revision = "refs/pr/15"
# This variable is used to determine which CUDA device are we using for our runners (A10 or T4)
# Depending on the hardware we get different logits / generations
cuda_compute_capability_major_version = None
@classmethod
def setUpClass(cls):
if is_torch_available() and torch.cuda.is_available():
# 8 is for A100 / A10 and 7 for T4
cls.cuda_compute_capability_major_version = torch.cuda.get_device_capability()[0]
def test_model_9b_fp16(self):
EXPECTED_TEXTS = [
"Hello I am doing a project on the history of the internetSolution:\n\nStep 1: Introduction\nThe history of the",
"Hi today I am going to show you how to make a simple and easy to make a DIY paper flower.",
]
model = AutoModelForCausalLM.from_pretrained(
self.model_id, low_cpu_mem_usage=True, torch_dtype=torch.float16, revision=self.revision
).to(torch_device)
tokenizer = AutoTokenizer.from_pretrained(self.model_id, revision=self.revision)
inputs = tokenizer(self.input_text, return_tensors="pt", padding=True).to(torch_device)
output = model.generate(**inputs, max_new_tokens=20, do_sample=False)
output_text = tokenizer.batch_decode(output, skip_special_tokens=True)
self.assertEqual(output_text, EXPECTED_TEXTS)
def test_model_9b_bf16(self):
EXPECTED_TEXTS = [
"Hello I am doing a project on the history of the internetSolution:\n\nStep 1: Introduction\nThe history of the",
"Hi today I am going to show you how to make a simple and easy to make a DIY paper flower.",
]
model = AutoModelForCausalLM.from_pretrained(
self.model_id, low_cpu_mem_usage=True, torch_dtype=torch.bfloat16, revision=self.revision
).to(torch_device)
tokenizer = AutoTokenizer.from_pretrained(self.model_id, revision=self.revision)
inputs = tokenizer(self.input_text, return_tensors="pt", padding=True).to(torch_device)
output = model.generate(**inputs, max_new_tokens=20, do_sample=False)
output_text = tokenizer.batch_decode(output, skip_special_tokens=True)
self.assertEqual(output_text, EXPECTED_TEXTS)
def test_model_9b_eager(self):
EXPECTED_TEXTS = [
"Hello I am doing a project on the history of the internetSolution:\n\nStep 1: Introduction\nThe history of the",
"Hi today I am going to show you how to make a simple and easy to make a DIY paper flower.",
]
model = AutoModelForCausalLM.from_pretrained(
self.model_id,
low_cpu_mem_usage=True,
torch_dtype=torch.bfloat16,
attn_implementation="eager",
revision=self.revision,
)
model.to(torch_device)
tokenizer = AutoTokenizer.from_pretrained(self.model_id, revision=self.revision)
inputs = tokenizer(self.input_text, return_tensors="pt", padding=True).to(torch_device)
output = model.generate(**inputs, max_new_tokens=20, do_sample=False)
output_text = tokenizer.batch_decode(output, skip_special_tokens=True)
self.assertEqual(output_text, EXPECTED_TEXTS)
@require_torch_sdpa
def test_model_9b_sdpa(self):
EXPECTED_TEXTS = [
"Hello I am doing a project on the history of the internetSolution:\n\nStep 1: Introduction\nThe history of the",
"Hi today I am going to show you how to make a simple and easy to make a DIY paper flower.",
]
model = AutoModelForCausalLM.from_pretrained(
self.model_id,
low_cpu_mem_usage=True,
torch_dtype=torch.bfloat16,
attn_implementation="sdpa",
revision=self.revision,
)
model.to(torch_device)
tokenizer = AutoTokenizer.from_pretrained(self.model_id, revision=self.revision)
inputs = tokenizer(self.input_text, return_tensors="pt", padding=True).to(torch_device)
output = model.generate(**inputs, max_new_tokens=20, do_sample=False)
output_text = tokenizer.batch_decode(output, skip_special_tokens=True)
self.assertEqual(output_text, EXPECTED_TEXTS)
@require_flash_attn
@pytest.mark.flash_attn_test
def test_model_9b_flash_attn(self):
EXPECTED_TEXTS = [
"Hello I am doing a project on the history of the internetSolution:\n\nStep 1: Introduction\nThe history of the",
"Hi today I am going to show you how to make a simple and easy to make a DIY paper flower.",
]
model = AutoModelForCausalLM.from_pretrained(
self.model_id,
low_cpu_mem_usage=True,
torch_dtype=torch.bfloat16,
attn_implementation="flash_attention_2",
revision=self.revision,
)
model.to(torch_device)
tokenizer = AutoTokenizer.from_pretrained(self.model_id, revision=self.revision)
inputs = tokenizer(self.input_text, return_tensors="pt", padding=True).to(torch_device)
output = model.generate(**inputs, max_new_tokens=20, do_sample=False)
output_text = tokenizer.batch_decode(output, skip_special_tokens=True)
self.assertEqual(output_text, EXPECTED_TEXTS)