mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-16 19:18:24 +06:00
128 lines
5.4 KiB
Python
128 lines
5.4 KiB
Python
# coding=utf-8
|
|
# Copyright 2018 The Open AI Team Authors and The HuggingFace Inc. team.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""PyTorch optimization for OpenAI GPT model."""
|
|
|
|
import math
|
|
import torch
|
|
from torch.optim import Optimizer
|
|
from torch.optim.optimizer import required
|
|
from torch.nn.utils import clip_grad_norm_
|
|
import logging
|
|
from .optimization import SCHEDULES, _LRSchedule, WarmupCosineWithWarmupRestartsSchedule, \
|
|
WarmupCosineWithHardRestartsSchedule, WarmupCosineSchedule, WarmupLinearSchedule, WarmupConstantSchedule
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
class OpenAIAdam(Optimizer):
|
|
"""Implements Open AI version of Adam algorithm with weight decay fix.
|
|
"""
|
|
def __init__(self, params, lr=required, schedule='warmup_linear', warmup=-1, t_total=-1,
|
|
b1=0.9, b2=0.999, e=1e-8, weight_decay=0,
|
|
vector_l2=False, max_grad_norm=-1, **kwargs):
|
|
if lr is not required and lr < 0.0:
|
|
raise ValueError("Invalid learning rate: {} - should be >= 0.0".format(lr))
|
|
if not isinstance(schedule, _LRSchedule) and schedule not in SCHEDULES:
|
|
raise ValueError("Invalid schedule parameter: {}".format(schedule))
|
|
if not 0.0 <= b1 < 1.0:
|
|
raise ValueError("Invalid b1 parameter: {} - should be in [0.0, 1.0[".format(b1))
|
|
if not 0.0 <= b2 < 1.0:
|
|
raise ValueError("Invalid b2 parameter: {} - should be in [0.0, 1.0[".format(b2))
|
|
if not e >= 0.0:
|
|
raise ValueError("Invalid epsilon value: {} - should be >= 0.0".format(e))
|
|
# initialize schedule object
|
|
if not isinstance(schedule, _LRSchedule):
|
|
schedule_type = SCHEDULES[schedule]
|
|
schedule = schedule_type(warmup=warmup, t_total=t_total)
|
|
else:
|
|
if warmup != -1 or t_total != -1:
|
|
logger.warning("warmup and t_total on the optimizer are ineffective when _LRSchedule object is provided as schedule. "
|
|
"Please specify custom warmup and t_total in _LRSchedule object.")
|
|
defaults = dict(lr=lr, schedule=schedule,
|
|
b1=b1, b2=b2, e=e, weight_decay=weight_decay, vector_l2=vector_l2,
|
|
max_grad_norm=max_grad_norm)
|
|
super(OpenAIAdam, self).__init__(params, defaults)
|
|
|
|
def get_lr(self):
|
|
lr = []
|
|
for group in self.param_groups:
|
|
for p in group['params']:
|
|
state = self.state[p]
|
|
if len(state) == 0:
|
|
return [0]
|
|
lr_scheduled = group['lr']
|
|
lr_scheduled *= group['schedule'].get_lr(state['step'])
|
|
lr.append(lr_scheduled)
|
|
return lr
|
|
|
|
def step(self, closure=None):
|
|
"""Performs a single optimization step.
|
|
|
|
Arguments:
|
|
closure (callable, optional): A closure that reevaluates the model
|
|
and returns the loss.
|
|
"""
|
|
loss = None
|
|
if closure is not None:
|
|
loss = closure()
|
|
|
|
for group in self.param_groups:
|
|
for p in group['params']:
|
|
if p.grad is None:
|
|
continue
|
|
grad = p.grad.data
|
|
if grad.is_sparse:
|
|
raise RuntimeError('Adam does not support sparse gradients, please consider SparseAdam instead')
|
|
|
|
state = self.state[p]
|
|
|
|
# State initialization
|
|
if len(state) == 0:
|
|
state['step'] = 0
|
|
# Exponential moving average of gradient values
|
|
state['exp_avg'] = torch.zeros_like(p.data)
|
|
# Exponential moving average of squared gradient values
|
|
state['exp_avg_sq'] = torch.zeros_like(p.data)
|
|
|
|
exp_avg, exp_avg_sq = state['exp_avg'], state['exp_avg_sq']
|
|
beta1, beta2 = group['b1'], group['b2']
|
|
|
|
state['step'] += 1
|
|
|
|
# Add grad clipping
|
|
if group['max_grad_norm'] > 0:
|
|
clip_grad_norm_(p, group['max_grad_norm'])
|
|
|
|
# Decay the first and second moment running average coefficient
|
|
exp_avg.mul_(beta1).add_(1 - beta1, grad)
|
|
exp_avg_sq.mul_(beta2).addcmul_(1 - beta2, grad, grad)
|
|
denom = exp_avg_sq.sqrt().add_(group['e'])
|
|
|
|
bias_correction1 = 1 - beta1 ** state['step']
|
|
bias_correction2 = 1 - beta2 ** state['step']
|
|
|
|
lr_scheduled = group['lr']
|
|
lr_scheduled *= group['schedule'].get_lr(state['step'])
|
|
|
|
step_size = lr_scheduled * math.sqrt(bias_correction2) / bias_correction1
|
|
|
|
p.data.addcdiv_(-step_size, exp_avg, denom)
|
|
|
|
# Add weight decay at the end (fixed version)
|
|
if (len(p.size()) > 1 or group['vector_l2']) and group['weight_decay'] > 0:
|
|
p.data.add_(-lr_scheduled * group['weight_decay'], p.data)
|
|
|
|
return loss
|