mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-03 12:50:06 +06:00

* initial design * update all video processors * add tests * need to add qwen2-vl (not tested yet) * add qwen2-vl in auto map * fix copies * isort * resolve confilicts kinda * nit: * qwen2-vl is happy now * qwen2-5 happy * other models are happy * fix copies * fix tests * add docs * CI green now? * add more tests * even more changes + tests * doc builder fail * nit * Update src/transformers/models/auto/processing_auto.py Co-authored-by: Pavel Iakubovskii <qubvel@gmail.com> * small update * imports correctly * dump, otherwise this is getting unmanagebale T-T * dump * update * another update * update * tests * move * modular * docs * test * another update * init * remove flakiness in tests * fixup * clean up and remove commented lines * docs * skip this one! * last fix after rebasing * run fixup * delete slow files * remove unnecessary tests + clean up a bit * small fixes * fix tests * more updates * docs * fix tests * update * style * fix qwen2-5-vl * fixup * fixup * unflatten batch when preparing * dump, come back soon * add docs and fix some tests * how to guard this with new dummies? * chat templates in qwen * address some comments * remove `Fast` suffix * fixup * oops should be imported from transforms * typo in requires dummies * new model added with video support * fixup once more * last fixup I hope * revert image processor name + comments * oh, this is why fetch test is failing * fix tests * fix more tests * fixup * add new models: internvl, smolvlm * update docs * imprt once * fix failing tests * do we need to guard it here again, why? * new model was added, update it * remove testcase from tester * fix tests * make style * not related CI fail, lets' just fix here * mark flaky for now, filas 15 out of 100 * style * maybe we can do this way? * don't download images in setup class --------- Co-authored-by: Pavel Iakubovskii <qubvel@gmail.com>
119 lines
4.3 KiB
Python
119 lines
4.3 KiB
Python
# coding=utf-8
|
|
# Copyright 2025 HuggingFace Inc.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import unittest
|
|
|
|
import numpy as np
|
|
|
|
from transformers.image_utils import IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD
|
|
from transformers.testing_utils import require_torch, require_vision
|
|
from transformers.utils import is_torch_available, is_torchvision_available, is_vision_available
|
|
|
|
from ...test_video_processing_common import VideoProcessingTestMixin, prepare_video_inputs
|
|
|
|
|
|
if is_torch_available():
|
|
import torch
|
|
|
|
if is_vision_available():
|
|
if is_torchvision_available():
|
|
from transformers import SmolVLMVideoProcessor
|
|
from transformers.models.smolvlm.video_processing_smolvlm import get_resize_output_image_size
|
|
|
|
|
|
class SmolVLMVideoProcessingTester:
|
|
def __init__(
|
|
self,
|
|
parent,
|
|
batch_size=5,
|
|
num_frames=8,
|
|
num_channels=3,
|
|
min_resolution=30,
|
|
max_resolution=80,
|
|
do_resize=True,
|
|
size=None,
|
|
do_normalize=True,
|
|
image_mean=IMAGENET_STANDARD_MEAN,
|
|
image_std=IMAGENET_STANDARD_STD,
|
|
do_convert_rgb=True,
|
|
):
|
|
size = size if size is not None else {"longest_edge": 20}
|
|
self.parent = parent
|
|
self.batch_size = batch_size
|
|
self.num_frames = num_frames
|
|
self.num_channels = num_channels
|
|
self.min_resolution = min_resolution
|
|
self.max_resolution = max_resolution
|
|
self.do_resize = do_resize
|
|
self.size = size
|
|
self.do_normalize = do_normalize
|
|
self.image_mean = image_mean
|
|
self.image_std = image_std
|
|
self.do_convert_rgb = do_convert_rgb
|
|
|
|
def prepare_video_processor_dict(self):
|
|
return {
|
|
"do_resize": self.do_resize,
|
|
"size": self.size,
|
|
"do_normalize": self.do_normalize,
|
|
"image_mean": self.image_mean,
|
|
"image_std": self.image_std,
|
|
"do_convert_rgb": self.do_convert_rgb,
|
|
}
|
|
|
|
def expected_output_video_shape(self, videos):
|
|
max_height, max_width = 0, 0
|
|
if not isinstance(videos[0], torch.Tensor):
|
|
videos = [torch.tensor(np.array(video)).permute(0, -1, -3, -2) for video in videos]
|
|
for video in videos:
|
|
height, width = get_resize_output_image_size(video, self.size["longest_edge"])
|
|
max_height = max(height, max_height)
|
|
max_width = max(width, max_width)
|
|
return [self.num_frames, self.num_channels, max_height, max_width]
|
|
|
|
def prepare_video_inputs(self, equal_resolution=False, return_tensors="pil"):
|
|
videos = prepare_video_inputs(
|
|
batch_size=self.batch_size,
|
|
num_frames=self.num_frames,
|
|
num_channels=self.num_channels,
|
|
min_resolution=self.min_resolution,
|
|
max_resolution=self.max_resolution,
|
|
equal_resolution=equal_resolution,
|
|
return_tensors=return_tensors,
|
|
)
|
|
return videos
|
|
|
|
|
|
@require_torch
|
|
@require_vision
|
|
class SmolVLMVideoProcessingTest(VideoProcessingTestMixin, unittest.TestCase):
|
|
fast_video_processing_class = SmolVLMVideoProcessor if is_torchvision_available() else None
|
|
input_name = "pixel_values"
|
|
|
|
def setUp(self):
|
|
super().setUp()
|
|
self.video_processor_tester = SmolVLMVideoProcessingTester(self)
|
|
|
|
@property
|
|
def video_processor_dict(self):
|
|
return self.video_processor_tester.prepare_video_processor_dict()
|
|
|
|
def test_video_processor_from_dict_with_kwargs(self):
|
|
video_processor = self.fast_video_processing_class.from_dict(self.video_processor_dict)
|
|
self.assertEqual(video_processor.size, {"longest_edge": 20})
|
|
|
|
video_processor = self.fast_video_processing_class.from_dict(self.video_processor_dict, size=42)
|
|
self.assertEqual(video_processor.size, {"height": 42, "width": 42})
|