transformers/tests/models/smolvlm/test_processor_smolvlm.py
Raushan Turganbay a31fa218ad
🔴 Video processors as a separate class (#35206)
* initial design

* update all video processors

* add tests

* need to add qwen2-vl (not tested yet)

* add qwen2-vl in auto map

* fix copies

* isort

* resolve confilicts kinda

* nit:

* qwen2-vl is happy now

* qwen2-5 happy

* other models are happy

* fix copies

* fix tests

* add docs

* CI green now?

* add more tests

* even more changes + tests

* doc builder fail

* nit

* Update src/transformers/models/auto/processing_auto.py

Co-authored-by: Pavel Iakubovskii <qubvel@gmail.com>

* small update

* imports correctly

* dump, otherwise this is getting unmanagebale T-T

* dump

* update

* another update

* update

* tests

* move

* modular

* docs

* test

* another update

* init

* remove flakiness in tests

* fixup

* clean up and remove commented lines

* docs

* skip this one!

* last fix after rebasing

* run fixup

* delete slow files

* remove unnecessary tests + clean up a bit

* small fixes

* fix tests

* more updates

* docs

* fix tests

* update

* style

* fix qwen2-5-vl

* fixup

* fixup

* unflatten batch when preparing

* dump, come back soon

* add docs and fix some tests

* how to guard this with new dummies?

* chat templates in qwen

* address some comments

* remove `Fast` suffix

* fixup

* oops should be imported from transforms

* typo in requires dummies

* new model added with video support

* fixup once more

* last fixup I hope

* revert image processor name + comments

* oh, this is why fetch test is failing

* fix tests

* fix more tests

* fixup

* add new models: internvl, smolvlm

* update docs

* imprt once

* fix failing tests

* do we need to guard it here again, why?

* new model was added, update it

* remove testcase from tester

* fix tests

* make style

* not related CI fail, lets' just fix here

* mark flaky for now, filas 15 out of 100

* style

* maybe we can do this way?

* don't download images in setup class

---------

Co-authored-by: Pavel Iakubovskii <qubvel@gmail.com>
2025-05-12 11:55:51 +02:00

574 lines
25 KiB
Python

# Copyright 2024 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import shutil
import tempfile
import unittest
from io import BytesIO
import numpy as np
import requests
from transformers import SmolVLMProcessor
from transformers.models.auto.processing_auto import AutoProcessor
from transformers.testing_utils import is_flaky, require_av, require_torch, require_vision
from transformers.utils import is_vision_available
from ...test_processing_common import ProcessorTesterMixin
if is_vision_available():
from PIL import Image
@require_torch
@require_vision
class SmolVLMProcessorTest(ProcessorTesterMixin, unittest.TestCase):
processor_class = SmolVLMProcessor
videos_input_name = "pixel_values"
@classmethod
def setUpClass(cls):
cls.tmpdirname = tempfile.mkdtemp()
processor_kwargs = cls.prepare_processor_dict()
processor = SmolVLMProcessor.from_pretrained("HuggingFaceTB/SmolVLM2-256M-Video-Instruct", **processor_kwargs)
processor.save_pretrained(cls.tmpdirname)
cls.image1 = Image.open(
BytesIO(
requests.get(
"https://cdn.britannica.com/61/93061-050-99147DCE/Statue-of-Liberty-Island-New-York-Bay.jpg"
).content
)
)
cls.image2 = Image.open(
BytesIO(requests.get("https://cdn.britannica.com/59/94459-050-DBA42467/Skyline-Chicago.jpg").content)
)
cls.image3 = Image.open(
BytesIO(
requests.get(
"https://thumbs.dreamstime.com/b/golden-gate-bridge-san-francisco-purple-flowers-california-echium-candicans-36805947.jpg"
).content
)
)
cls.bos_token = processor.tokenizer.bos_token
cls.image_token = processor.image_token
cls.video_token = processor.image_token * 8 # SmolVLM uses image token and repeats it `num_frames` times
cls.fake_image_token = processor.fake_image_token
cls.global_img_token = processor.global_image_token
cls.bos_token_id = processor.tokenizer.convert_tokens_to_ids(cls.bos_token)
cls.image_token_id = processor.tokenizer.convert_tokens_to_ids(cls.image_token)
cls.fake_image_token_id = processor.tokenizer.convert_tokens_to_ids(cls.fake_image_token)
cls.global_img_tokens_id = processor.tokenizer(cls.global_img_token, add_special_tokens=False)["input_ids"]
cls.padding_token_id = processor.tokenizer.pad_token_id
cls.image_seq_len = processor.image_seq_len
def get_tokenizer(self, **kwargs):
return AutoProcessor.from_pretrained(self.tmpdirname, **kwargs).tokenizer
def get_image_processor(self, **kwargs):
return AutoProcessor.from_pretrained(self.tmpdirname, **kwargs).image_processor
def get_video_processor(self, **kwargs):
return AutoProcessor.from_pretrained(self.tmpdirname, **kwargs).video_processor
def get_processor(self, **kwargs):
return AutoProcessor.from_pretrained(self.tmpdirname, **kwargs)
@staticmethod
def prepare_processor_dict():
return {
"image_seq_len": 2,
"chat_template": "<|im_start|>{% for message in messages %}{{message['role'] | capitalize}}{% if message['content'][0]['type'] == 'image' %}{{':'}}{% else %}{{': '}}{% endif %}{% for line in message['content'] %}{% if line['type'] == 'text' %}{{line['text']}}{% elif line['type'] == 'image' %}{{ '<image>' }}{% endif %}{% endfor %}<end_of_utterance>\n{% endfor %}{% if add_generation_prompt %}{{ 'Assistant:' }}{% endif %}",
}
def get_split_image_expected_tokens(self, processor, image_rows, image_cols):
text_split_images = []
for n_h in range(image_rows):
for n_w in range(image_cols):
text_split_images += (
[self.fake_image_token_id]
+ processor.tokenizer(f"<row_{n_h + 1}_col_{n_w + 1}>", add_special_tokens=False)["input_ids"]
+ [self.image_token_id] * self.image_seq_len
)
text_split_images += processor.tokenizer("\n", add_special_tokens=False)["input_ids"]
text_split_images = text_split_images[:-1] # remove last newline
# add double newline, as it gets its own token
text_split_images += processor.tokenizer("\n\n", add_special_tokens=False)["input_ids"]
text_split_images += (
[self.fake_image_token_id]
+ self.global_img_tokens_id
+ [self.image_token_id] * self.image_seq_len
+ [self.fake_image_token_id]
)
return text_split_images
@classmethod
def tearDownClass(cls):
shutil.rmtree(cls.tmpdirname, ignore_errors=True)
@is_flaky # fails 15 out of 100, FIXME @raushan
def test_structured_kwargs_nested_from_dict_video(self):
super().test_structured_kwargs_nested_from_dict_video()
def test_process_interleaved_images_prompts_no_image_splitting(self):
processor_components = self.prepare_components()
processor_components["tokenizer"] = self.get_component("tokenizer", padding_side="left")
processor_components["image_processor"] = self.get_component("image_processor", do_image_splitting=False)
processor_kwargs = self.prepare_processor_dict()
processor = self.processor_class(**processor_components, **processor_kwargs)
# Test that a single image is processed correctly
inputs = processor(images=self.image1)
image1_expected_size = (512, 512)
self.assertEqual(np.array(inputs["pixel_values"]).shape, (1, 1, 3, *image1_expected_size))
self.assertEqual(np.array(inputs["pixel_attention_mask"]).shape, (1, 1, *image1_expected_size))
# fmt: on
# Test a single sample with image and text
image_str = "<image>"
text_str = "In this image, we see"
text = image_str + text_str
inputs = processor(text=text, images=self.image1)
# fmt: off
tokenized_sentence = processor.tokenizer(text_str, add_special_tokens=False)
expected_input_ids = [[self.fake_image_token_id] + self.global_img_tokens_id + [self.image_token_id] * self.image_seq_len + [self.fake_image_token_id] + tokenized_sentence["input_ids"]]
self.assertEqual(inputs["input_ids"], expected_input_ids)
self.assertEqual(inputs["attention_mask"], [[1] * len(expected_input_ids[0])])
self.assertEqual(np.array(inputs["pixel_values"]).shape, (1, 1, 3, *image1_expected_size))
self.assertEqual(np.array(inputs["pixel_attention_mask"]).shape, (1, 1, *image1_expected_size))
# fmt: on
# Test that batch is correctly processed
image_str = "<image>"
text_str_1 = "In this image, we see"
text_str_2 = "In this image, we see"
text = [
image_str + text_str_1,
image_str + image_str + text_str_2,
]
images = [[self.image1], [self.image2, self.image3]]
inputs = processor(text=text, images=images, padding=True)
# fmt: off
tokenized_sentence_1 = processor.tokenizer(text_str_1, add_special_tokens=False)
tokenized_sentence_2 = processor.tokenizer(text_str_2, add_special_tokens=False)
image_tokens = [self.fake_image_token_id] + self.global_img_tokens_id + [self.image_token_id] * self.image_seq_len + [self.fake_image_token_id]
expected_input_ids_1 = image_tokens + tokenized_sentence_1["input_ids"]
expected_input_ids_2 = 2 * image_tokens + tokenized_sentence_2["input_ids"]
# Pad the first input to match the second input
pad_len = len(expected_input_ids_2) - len(expected_input_ids_1)
padded_expected_input_ids_1 = [self.padding_token_id] * pad_len + expected_input_ids_1
self.assertEqual(
inputs["input_ids"], [padded_expected_input_ids_1, expected_input_ids_2]
)
self.assertEqual(
inputs["attention_mask"],
[[0] * pad_len + [1] * len(expected_input_ids_1), [1] * len(expected_input_ids_2)]
)
self.assertEqual(np.array(inputs['pixel_values']).shape, (2, 2, 3, 512, 512))
self.assertEqual(np.array(inputs['pixel_attention_mask']).shape, (2, 2, 512, 512))
# fmt: on
def test_process_interleaved_images_prompts_image_splitting(self):
processor_components = self.prepare_components()
processor_components["tokenizer"] = self.get_component("tokenizer", padding_side="left")
processor_components["image_processor"] = self.get_component("image_processor", do_image_splitting=True)
processor_kwargs = self.prepare_processor_dict()
processor = self.processor_class(**processor_components, **processor_kwargs)
# Test that a single image is processed correctly
inputs = processor(images=self.image1)
self.assertEqual(np.array(inputs["pixel_values"]).shape, (1, 13, 3, 512, 512))
self.assertEqual(np.array(inputs["pixel_attention_mask"]).shape, (1, 13, 512, 512))
# fmt: on
self.maxDiff = None
# Test a single sample with image and text
image_str = "<image>"
text_str = "In this image, we see"
text = image_str + text_str
inputs = processor(text=text, images=self.image1)
# fmt: off
tokenized_sentence = processor.tokenizer(text_str, add_special_tokens=False)
split_image1_tokens = self.get_split_image_expected_tokens(processor, 3, 4)
expected_input_ids_1 = [split_image1_tokens + tokenized_sentence["input_ids"]]
self.assertEqual(inputs["input_ids"], expected_input_ids_1)
self.assertEqual(inputs["attention_mask"], [[1] * len(expected_input_ids_1[0])])
self.assertEqual(np.array(inputs["pixel_values"]).shape, (1, 13, 3, 512, 512))
self.assertEqual(np.array(inputs["pixel_attention_mask"]).shape, (1, 13, 512, 512))
# fmt: on
# Test that batch is correctly processed
image_str = "<image>"
text_str_1 = "In this image, we see"
text_str_2 = "bla, bla"
text = [
image_str + text_str_1,
text_str_2 + image_str + image_str,
]
images = [[self.image1], [self.image2, self.image3]]
inputs = processor(text=text, images=images, padding=True)
# fmt: off
tokenized_sentence_1 = processor.tokenizer(text_str_1, add_special_tokens=False)
tokenized_sentence_2 = processor.tokenizer(text_str_2, add_special_tokens=False)
split_image1_tokens = self.get_split_image_expected_tokens(processor, 3, 4)
split_image2_tokens = self.get_split_image_expected_tokens(processor, 4, 4)
split_image3_tokens = self.get_split_image_expected_tokens(processor, 3, 4)
expected_input_ids_1 = split_image1_tokens + tokenized_sentence_1["input_ids"]
expected_input_ids_2 = tokenized_sentence_2["input_ids"] + split_image2_tokens + split_image3_tokens
# Pad the first input to match the second input
pad_len = len(expected_input_ids_2) - len(expected_input_ids_1)
padded_expected_input_ids_1 = [self.padding_token_id] * pad_len + expected_input_ids_1
self.assertEqual(
inputs["input_ids"], [padded_expected_input_ids_1, expected_input_ids_2]
)
self.assertEqual(
inputs["attention_mask"],
[[0] * pad_len + [1] * len(expected_input_ids_1), [1] * len(expected_input_ids_2)]
)
self.assertEqual(np.array(inputs['pixel_values']).shape, (2, 30, 3, 512, 512))
self.assertEqual(np.array(inputs['pixel_attention_mask']).shape, (2, 30, 512, 512))
# fmt: on
def test_add_special_tokens_processor(self):
processor = self.get_processor()
image_str = "<image>"
text_str = "In this image, we see"
text = text_str + image_str
# fmt: off
inputs = processor(text=text, images=self.image1, add_special_tokens=False)
tokenized_sentence = processor.tokenizer(text_str, add_special_tokens=False)
split_image1_tokens = self.get_split_image_expected_tokens(processor, 3, 4)
expected_input_ids = [tokenized_sentence["input_ids"] + split_image1_tokens]
self.assertEqual(inputs["input_ids"], expected_input_ids)
inputs = processor(text=text, images=self.image1)
expected_input_ids = [tokenized_sentence["input_ids"] + split_image1_tokens]
self.assertEqual(inputs["input_ids"], expected_input_ids)
# fmt: on
@unittest.skip(reason="from @molbap @zucchini-nlp, passing non-nested images is error-prone and not recommended")
def test_non_nested_images_with_batched_text(self):
processor = self.get_processor()
processor.image_processor.do_image_splitting = False
image_str = "<image>"
text_str_1 = "In this image, we see"
text_str_2 = "In this image, we see"
text = [
image_str + text_str_1,
image_str + image_str + text_str_2,
]
images = [[self.image1], [self.image2, self.image3]]
inputs = processor(text=text, images=images, padding=True)
self.assertEqual(np.array(inputs["pixel_values"]).shape, (2, 2, 3, 512, 512))
self.assertEqual(np.array(inputs["pixel_attention_mask"]).shape, (2, 2, 512, 512))
# Copied from tests.models.idefics2.test_processor_idefics2.Idefics2ProcessorTest.test_process_interleaved_images_prompts_image_error
def test_process_interleaved_images_prompts_image_error(self):
processor = self.get_processor()
text = [
"This is a test sentence.",
"In this other sentence we try some good things",
]
images = [[self.image1], [self.image2]]
with self.assertRaises(ValueError):
processor(text=text, images=images, padding=True)
images = [[self.image1], []]
with self.assertRaises(ValueError):
processor(text=text, images=images, padding=True)
text = [
"This is a test sentence.<image>",
"In this other sentence we try some good things<image>",
]
images = [[self.image1], [self.image2, self.image3]]
with self.assertRaises(ValueError):
processor(text=text, images=images, padding=True)
images = [[], [self.image2]]
with self.assertRaises(ValueError):
processor(text=text, images=images, padding=True)
images = [self.image1, self.image2, self.image3]
with self.assertRaises(ValueError):
processor(text=text, images=images, padding=True)
images = [self.image1]
with self.assertRaises(ValueError):
processor(text=text, images=images, padding=True)
text = [
"This is a test sentence.",
"In this other sentence we try some good things<image>",
]
images = [[self.image1], []]
with self.assertRaises(ValueError):
processor(text=text, images=images, padding=True)
images = [[], [self.image2]]
with self.assertRaises(ValueError):
processor(text=text, images=images, padding=True)
images = [self.image1, self.image2]
with self.assertRaises(ValueError):
processor(text=text, images=images, padding=True)
images = [self.image1]
with self.assertRaises(ValueError):
processor(text=text, images=images, padding=True)
def test_apply_chat_template(self):
# Message contains content which a mix of lists with images and image urls and string
messages = [
{
"role": "user",
"content": [
{"type": "text", "text": "What do these images show?"},
{"type": "image"},
{"type": "image"},
"What do these images show?",
],
},
{
"role": "assistant",
"content": [
{
"type": "text",
"text": "The first image shows the statue of Liberty in New York. The second image picture depicts Idefix, the dog of Obelix in Asterix and Obelix.",
}
],
},
{"role": "user", "content": [{"type": "text", "text": "And who is that?"}]},
]
processor = self.get_processor()
# Make short sequence length to test that the fake tokens are added correctly
rendered = processor.apply_chat_template(messages, add_generation_prompt=True)
expected_rendered = (
"<|im_start|>User: What do these images show?<image><image><end_of_utterance>\n"
"Assistant: The first image shows the statue of Liberty in New York. The second image picture depicts Idefix, the dog of Obelix in Asterix and Obelix.<end_of_utterance>\n"
"User: And who is that?<end_of_utterance>\n"
"Assistant:"
)
self.assertEqual(rendered, expected_rendered)
@unittest.skip(reason="SmolVLM replaced `type=video` with `type=image` in chat templates")
def test_apply_chat_template_video_special_processing(self):
pass
@require_av
def test_apply_chat_template_video_frame_sampling(self):
# overridden because SmolVLM has special preprocessing for videos
processor = self.get_processor()
if processor.chat_template is None:
self.skipTest("Processor has no chat template")
messages = [
[
{
"role": "user",
"content": [
{
"type": "video",
"url": "https://test-videos.co.uk/vids/bigbuckbunny/mp4/h264/720/Big_Buck_Bunny_720_10s_10MB.mp4",
},
{"type": "text", "text": "What is shown in this video?"},
],
},
]
]
num_frames = 3
out_dict_with_video = processor.apply_chat_template(
messages,
add_generation_prompt=True,
tokenize=True,
return_dict=True,
num_frames=num_frames,
return_tensors="np",
)
self.assertTrue(self.videos_input_name in out_dict_with_video)
self.assertEqual(len(out_dict_with_video[self.videos_input_name]), 1)
# SmolVLM doesn't sample `num_frames` exactly, by uses other sampling method
self.assertEqual(len(out_dict_with_video[self.videos_input_name][0]), 3)
# Load with `video_fps` arg
video_fps = 1
out_dict_with_video = processor.apply_chat_template(
messages,
add_generation_prompt=True,
tokenize=True,
return_dict=True,
video_fps=video_fps,
return_tensors="np",
)
self.assertTrue(self.videos_input_name in out_dict_with_video)
self.assertEqual(len(out_dict_with_video[self.videos_input_name]), 1)
# SmolVLM doesn't sample 1 frame per second exactly, by uses other sampling method
self.assertEqual(len(out_dict_with_video[self.videos_input_name][0]), video_fps * 10)
# NOTE: the last assert checks are removed
# Loading video as a list of frames (i.e. images) is not supported in SmolVLM
@require_torch
@require_vision
def test_unstructured_kwargs_batched(self):
if "image_processor" not in self.processor_class.attributes:
self.skipTest(f"image_processor attribute not present in {self.processor_class}")
image_processor = self.get_component("image_processor")
video_processor = self.get_component("video_processor")
tokenizer = self.get_component("tokenizer")
processor_kwargs = self.prepare_processor_dict()
processor = self.processor_class(
tokenizer=tokenizer, image_processor=image_processor, video_processor=video_processor, **processor_kwargs
)
self.skip_processor_without_typed_kwargs(processor)
input_str = self.prepare_text_inputs(batch_size=2, modality="image")
image_input = self.prepare_image_inputs(batch_size=2)
image_input = [[image_input[0]], [image_input[1]]]
inputs = processor(
text=input_str,
images=image_input,
return_tensors="pt",
padding="max_length",
max_length=76,
truncation=True,
max_image_size={"longest_edge": 300},
)
self.assertEqual(inputs["pixel_values"].shape[2], 3)
self.assertEqual(inputs["pixel_values"].shape[3], 300)
self.assertEqual(len(inputs["input_ids"][0]), 76)
@require_torch
@require_vision
def test_text_only_inference(self):
"""Test that the processor works correctly with text-only input."""
processor_components = self.prepare_components()
processor_components["tokenizer"] = self.get_component("tokenizer", padding_side="left")
processor_kwargs = self.prepare_processor_dict()
processor = self.processor_class(**processor_components, **processor_kwargs)
text = "This is a simple text without images."
inputs = processor(text=text)
tokenized_sentence = processor.tokenizer(text, add_special_tokens=False)
expected_input_ids = [tokenized_sentence["input_ids"]]
self.assertEqual(inputs["input_ids"], expected_input_ids)
self.assertEqual(inputs["attention_mask"], [[1] * len(expected_input_ids[0])])
self.assertTrue("pixel_values" not in inputs)
self.assertTrue("pixel_attention_mask" not in inputs)
# Test batch of texts without image tokens
texts = ["First text.", "Second piece of text."]
batch_inputs = processor(text=texts, padding=True)
tokenized_1 = processor.tokenizer(texts[0], add_special_tokens=False)
tokenized_2 = processor.tokenizer(texts[1], add_special_tokens=False)
expected_1 = tokenized_1["input_ids"]
expected_2 = tokenized_2["input_ids"]
# Pad the shorter sequence
pad_len = len(expected_2) - len(expected_1)
if pad_len > 0:
padded_expected_1 = [self.padding_token_id] * pad_len + expected_1
expected_attention_1 = [0] * pad_len + [1] * len(expected_1)
self.assertEqual(batch_inputs["input_ids"], [padded_expected_1, expected_2])
self.assertEqual(batch_inputs["attention_mask"], [expected_attention_1, [1] * len(expected_2)])
else:
pad_len = -pad_len
padded_expected_2 = [self.padding_token_id] * pad_len + expected_2
expected_attention_2 = [0] * pad_len + [1] * len(expected_2)
self.assertEqual(batch_inputs["input_ids"], [expected_1, padded_expected_2])
self.assertEqual(batch_inputs["attention_mask"], [[1] * len(expected_1), expected_attention_2])
@require_torch
@require_vision
def test_missing_images_error(self):
"""Test that appropriate error is raised when images are referenced but not provided."""
processor = self.get_processor()
# Test single text with image token but no image
text = "Let me show you this image: <image> What do you think?"
with self.assertRaises(ValueError) as context:
processor(text=text)
self.assertTrue("tokens in the text but no images/videos were passed" in str(context.exception))
# Test batch with image tokens but no images
texts = [
"First text with <image> token.",
"Second text <image> with token.",
]
with self.assertRaises(ValueError) as context:
processor(text=texts)
self.assertTrue("tokens in the text but no images/videos were passed" in str(context.exception))
# Test with None as Images
with self.assertRaises(ValueError) as context:
processor(text=text, images=None)
self.assertTrue("tokens in the text but no images/videos were passed" in str(context.exception))
with self.assertRaises(ValueError) as context:
processor(text=texts, images=None)
self.assertTrue("tokens in the text but no images/videos were passed" in str(context.exception))
def test_special_mm_token_truncation(self):
"""Tests that special vision tokens do not get truncated when `truncation=True` is set."""
processor = self.get_processor()
input_str = self.prepare_text_inputs(batch_size=2, modality="image")
image_input = self.prepare_image_inputs(batch_size=2)
image_input = [[image_input[0]], [image_input[1]]]
_ = processor(
text=input_str,
images=image_input,
return_tensors="pt",
truncation=None,
padding=True,
)
with self.assertRaises(ValueError):
_ = processor(
text=input_str,
images=image_input,
return_tensors="pt",
truncation=True,
padding=True,
max_length=20,
)
@unittest.skip("SmolVLM cannot accept image URL as video frames, because it needs to know video fps and duration")
def test_apply_chat_template_video_1(self):
pass