mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-03 12:50:06 +06:00

* initial design * update all video processors * add tests * need to add qwen2-vl (not tested yet) * add qwen2-vl in auto map * fix copies * isort * resolve confilicts kinda * nit: * qwen2-vl is happy now * qwen2-5 happy * other models are happy * fix copies * fix tests * add docs * CI green now? * add more tests * even more changes + tests * doc builder fail * nit * Update src/transformers/models/auto/processing_auto.py Co-authored-by: Pavel Iakubovskii <qubvel@gmail.com> * small update * imports correctly * dump, otherwise this is getting unmanagebale T-T * dump * update * another update * update * tests * move * modular * docs * test * another update * init * remove flakiness in tests * fixup * clean up and remove commented lines * docs * skip this one! * last fix after rebasing * run fixup * delete slow files * remove unnecessary tests + clean up a bit * small fixes * fix tests * more updates * docs * fix tests * update * style * fix qwen2-5-vl * fixup * fixup * unflatten batch when preparing * dump, come back soon * add docs and fix some tests * how to guard this with new dummies? * chat templates in qwen * address some comments * remove `Fast` suffix * fixup * oops should be imported from transforms * typo in requires dummies * new model added with video support * fixup once more * last fixup I hope * revert image processor name + comments * oh, this is why fetch test is failing * fix tests * fix more tests * fixup * add new models: internvl, smolvlm * update docs * imprt once * fix failing tests * do we need to guard it here again, why? * new model was added, update it * remove testcase from tester * fix tests * make style * not related CI fail, lets' just fix here * mark flaky for now, filas 15 out of 100 * style * maybe we can do this way? * don't download images in setup class --------- Co-authored-by: Pavel Iakubovskii <qubvel@gmail.com>
188 lines
7.0 KiB
Python
188 lines
7.0 KiB
Python
# Copyright 2024 The HuggingFace Team. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
import shutil
|
|
import tempfile
|
|
import unittest
|
|
|
|
import pytest
|
|
|
|
from transformers.testing_utils import require_torch, require_vision
|
|
from transformers.utils import is_torchvision_available, is_vision_available
|
|
|
|
from ...test_processing_common import ProcessorTesterMixin
|
|
|
|
|
|
if is_vision_available():
|
|
from transformers import (
|
|
AutoProcessor,
|
|
BertTokenizerFast,
|
|
GPT2Tokenizer,
|
|
InstructBlipVideoProcessor,
|
|
PreTrainedTokenizerFast,
|
|
)
|
|
|
|
if is_torchvision_available():
|
|
from transformers import InstructBlipVideoVideoProcessor
|
|
|
|
|
|
@require_vision
|
|
@require_torch
|
|
class InstructBlipVideoProcessorTest(ProcessorTesterMixin, unittest.TestCase):
|
|
processor_class = InstructBlipVideoProcessor
|
|
|
|
@classmethod
|
|
def setUpClass(cls):
|
|
cls.tmpdirname = tempfile.mkdtemp()
|
|
|
|
video_processor = InstructBlipVideoVideoProcessor()
|
|
tokenizer = GPT2Tokenizer.from_pretrained("hf-internal-testing/tiny-random-GPT2Model")
|
|
qformer_tokenizer = BertTokenizerFast.from_pretrained("hf-internal-testing/tiny-random-bert")
|
|
|
|
processor = InstructBlipVideoProcessor(video_processor, tokenizer, qformer_tokenizer)
|
|
|
|
processor.save_pretrained(cls.tmpdirname)
|
|
|
|
def get_tokenizer(self, **kwargs):
|
|
return AutoProcessor.from_pretrained(self.tmpdirname, **kwargs).tokenizer
|
|
|
|
def get_qformer_tokenizer(self, **kwargs):
|
|
return AutoProcessor.from_pretrained(self.tmpdirname, **kwargs).qformer_tokenizer
|
|
|
|
def get_video_processor(self, **kwargs):
|
|
return AutoProcessor.from_pretrained(self.tmpdirname, **kwargs).video_processor
|
|
|
|
@classmethod
|
|
def tearDownClass(cls):
|
|
shutil.rmtree(cls.tmpdirname, ignore_errors=True)
|
|
|
|
def test_save_load_pretrained_additional_features(self):
|
|
processor = InstructBlipVideoProcessor(
|
|
tokenizer=self.get_tokenizer(),
|
|
video_processor=self.get_video_processor(),
|
|
qformer_tokenizer=self.get_qformer_tokenizer(),
|
|
)
|
|
with tempfile.TemporaryDirectory() as tmpdir:
|
|
processor.save_pretrained(tmpdir)
|
|
|
|
tokenizer_add_kwargs = self.get_tokenizer(bos_token="(BOS)", eos_token="(EOS)")
|
|
video_processor_add_kwargs = self.get_video_processor(do_normalize=False, padding_value=1.0)
|
|
|
|
processor = InstructBlipVideoProcessor.from_pretrained(
|
|
tmpdir, bos_token="(BOS)", eos_token="(EOS)", do_normalize=False, padding_value=1.0
|
|
)
|
|
|
|
self.assertEqual(processor.tokenizer.get_vocab(), tokenizer_add_kwargs.get_vocab())
|
|
self.assertIsInstance(processor.tokenizer, PreTrainedTokenizerFast)
|
|
|
|
self.assertEqual(processor.video_processor.to_json_string(), video_processor_add_kwargs.to_json_string())
|
|
self.assertIsInstance(processor.video_processor, InstructBlipVideoVideoProcessor)
|
|
self.assertIsInstance(processor.qformer_tokenizer, BertTokenizerFast)
|
|
|
|
def test_video_processor(self):
|
|
video_processor = self.get_video_processor()
|
|
tokenizer = self.get_tokenizer()
|
|
qformer_tokenizer = self.get_qformer_tokenizer()
|
|
|
|
processor = InstructBlipVideoProcessor(
|
|
tokenizer=tokenizer, video_processor=video_processor, qformer_tokenizer=qformer_tokenizer
|
|
)
|
|
|
|
image_input = self.prepare_image_inputs()
|
|
|
|
input_feat_extract = video_processor(image_input, return_tensors="pt")
|
|
input_processor = processor(images=image_input, return_tensors="pt")
|
|
|
|
for key in input_feat_extract.keys():
|
|
self.assertAlmostEqual(input_feat_extract[key].sum(), input_processor[key].sum(), delta=1e-2)
|
|
|
|
def test_tokenizer(self):
|
|
video_processor = self.get_video_processor()
|
|
tokenizer = self.get_tokenizer()
|
|
qformer_tokenizer = self.get_qformer_tokenizer()
|
|
|
|
processor = InstructBlipVideoProcessor(
|
|
tokenizer=tokenizer, video_processor=video_processor, qformer_tokenizer=qformer_tokenizer
|
|
)
|
|
|
|
input_str = ["lower newer"]
|
|
|
|
encoded_processor = processor(text=input_str)
|
|
|
|
encoded_tokens = tokenizer(input_str, return_token_type_ids=False)
|
|
encoded_tokens_qformer = qformer_tokenizer(input_str, return_token_type_ids=False)
|
|
|
|
for key in encoded_tokens.keys():
|
|
self.assertListEqual(encoded_tokens[key], encoded_processor[key])
|
|
|
|
for key in encoded_tokens_qformer.keys():
|
|
self.assertListEqual(encoded_tokens_qformer[key], encoded_processor["qformer_" + key])
|
|
|
|
def test_processor(self):
|
|
video_processor = self.get_video_processor()
|
|
tokenizer = self.get_tokenizer()
|
|
qformer_tokenizer = self.get_qformer_tokenizer()
|
|
|
|
processor = InstructBlipVideoProcessor(
|
|
tokenizer=tokenizer, video_processor=video_processor, qformer_tokenizer=qformer_tokenizer
|
|
)
|
|
|
|
input_str = "lower newer"
|
|
image_input = self.prepare_image_inputs()
|
|
|
|
inputs = processor(text=input_str, images=image_input)
|
|
|
|
self.assertListEqual(
|
|
list(inputs.keys()),
|
|
["input_ids", "attention_mask", "qformer_input_ids", "qformer_attention_mask", "pixel_values"],
|
|
)
|
|
|
|
# test if it raises when no input is passed
|
|
with pytest.raises(ValueError):
|
|
processor()
|
|
|
|
def test_tokenizer_decode(self):
|
|
video_processor = self.get_video_processor()
|
|
tokenizer = self.get_tokenizer()
|
|
qformer_tokenizer = self.get_qformer_tokenizer()
|
|
|
|
processor = InstructBlipVideoProcessor(
|
|
tokenizer=tokenizer, video_processor=video_processor, qformer_tokenizer=qformer_tokenizer
|
|
)
|
|
|
|
predicted_ids = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]]
|
|
|
|
decoded_processor = processor.batch_decode(predicted_ids)
|
|
decoded_tok = tokenizer.batch_decode(predicted_ids)
|
|
|
|
self.assertListEqual(decoded_tok, decoded_processor)
|
|
|
|
def test_model_input_names(self):
|
|
video_processor = self.get_video_processor()
|
|
tokenizer = self.get_tokenizer()
|
|
qformer_tokenizer = self.get_qformer_tokenizer()
|
|
|
|
processor = InstructBlipVideoProcessor(
|
|
tokenizer=tokenizer, video_processor=video_processor, qformer_tokenizer=qformer_tokenizer
|
|
)
|
|
|
|
input_str = "lower newer"
|
|
image_input = self.prepare_image_inputs()
|
|
|
|
inputs = processor(text=input_str, images=image_input)
|
|
|
|
self.assertListEqual(
|
|
list(inputs.keys()),
|
|
["input_ids", "attention_mask", "qformer_input_ids", "qformer_attention_mask", "pixel_values"],
|
|
)
|