transformers/tests/models/instructblipvideo/test_processor_instructblipvideo.py
Raushan Turganbay a31fa218ad
🔴 Video processors as a separate class (#35206)
* initial design

* update all video processors

* add tests

* need to add qwen2-vl (not tested yet)

* add qwen2-vl in auto map

* fix copies

* isort

* resolve confilicts kinda

* nit:

* qwen2-vl is happy now

* qwen2-5 happy

* other models are happy

* fix copies

* fix tests

* add docs

* CI green now?

* add more tests

* even more changes + tests

* doc builder fail

* nit

* Update src/transformers/models/auto/processing_auto.py

Co-authored-by: Pavel Iakubovskii <qubvel@gmail.com>

* small update

* imports correctly

* dump, otherwise this is getting unmanagebale T-T

* dump

* update

* another update

* update

* tests

* move

* modular

* docs

* test

* another update

* init

* remove flakiness in tests

* fixup

* clean up and remove commented lines

* docs

* skip this one!

* last fix after rebasing

* run fixup

* delete slow files

* remove unnecessary tests + clean up a bit

* small fixes

* fix tests

* more updates

* docs

* fix tests

* update

* style

* fix qwen2-5-vl

* fixup

* fixup

* unflatten batch when preparing

* dump, come back soon

* add docs and fix some tests

* how to guard this with new dummies?

* chat templates in qwen

* address some comments

* remove `Fast` suffix

* fixup

* oops should be imported from transforms

* typo in requires dummies

* new model added with video support

* fixup once more

* last fixup I hope

* revert image processor name + comments

* oh, this is why fetch test is failing

* fix tests

* fix more tests

* fixup

* add new models: internvl, smolvlm

* update docs

* imprt once

* fix failing tests

* do we need to guard it here again, why?

* new model was added, update it

* remove testcase from tester

* fix tests

* make style

* not related CI fail, lets' just fix here

* mark flaky for now, filas 15 out of 100

* style

* maybe we can do this way?

* don't download images in setup class

---------

Co-authored-by: Pavel Iakubovskii <qubvel@gmail.com>
2025-05-12 11:55:51 +02:00

188 lines
7.0 KiB
Python

# Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import shutil
import tempfile
import unittest
import pytest
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torchvision_available, is_vision_available
from ...test_processing_common import ProcessorTesterMixin
if is_vision_available():
from transformers import (
AutoProcessor,
BertTokenizerFast,
GPT2Tokenizer,
InstructBlipVideoProcessor,
PreTrainedTokenizerFast,
)
if is_torchvision_available():
from transformers import InstructBlipVideoVideoProcessor
@require_vision
@require_torch
class InstructBlipVideoProcessorTest(ProcessorTesterMixin, unittest.TestCase):
processor_class = InstructBlipVideoProcessor
@classmethod
def setUpClass(cls):
cls.tmpdirname = tempfile.mkdtemp()
video_processor = InstructBlipVideoVideoProcessor()
tokenizer = GPT2Tokenizer.from_pretrained("hf-internal-testing/tiny-random-GPT2Model")
qformer_tokenizer = BertTokenizerFast.from_pretrained("hf-internal-testing/tiny-random-bert")
processor = InstructBlipVideoProcessor(video_processor, tokenizer, qformer_tokenizer)
processor.save_pretrained(cls.tmpdirname)
def get_tokenizer(self, **kwargs):
return AutoProcessor.from_pretrained(self.tmpdirname, **kwargs).tokenizer
def get_qformer_tokenizer(self, **kwargs):
return AutoProcessor.from_pretrained(self.tmpdirname, **kwargs).qformer_tokenizer
def get_video_processor(self, **kwargs):
return AutoProcessor.from_pretrained(self.tmpdirname, **kwargs).video_processor
@classmethod
def tearDownClass(cls):
shutil.rmtree(cls.tmpdirname, ignore_errors=True)
def test_save_load_pretrained_additional_features(self):
processor = InstructBlipVideoProcessor(
tokenizer=self.get_tokenizer(),
video_processor=self.get_video_processor(),
qformer_tokenizer=self.get_qformer_tokenizer(),
)
with tempfile.TemporaryDirectory() as tmpdir:
processor.save_pretrained(tmpdir)
tokenizer_add_kwargs = self.get_tokenizer(bos_token="(BOS)", eos_token="(EOS)")
video_processor_add_kwargs = self.get_video_processor(do_normalize=False, padding_value=1.0)
processor = InstructBlipVideoProcessor.from_pretrained(
tmpdir, bos_token="(BOS)", eos_token="(EOS)", do_normalize=False, padding_value=1.0
)
self.assertEqual(processor.tokenizer.get_vocab(), tokenizer_add_kwargs.get_vocab())
self.assertIsInstance(processor.tokenizer, PreTrainedTokenizerFast)
self.assertEqual(processor.video_processor.to_json_string(), video_processor_add_kwargs.to_json_string())
self.assertIsInstance(processor.video_processor, InstructBlipVideoVideoProcessor)
self.assertIsInstance(processor.qformer_tokenizer, BertTokenizerFast)
def test_video_processor(self):
video_processor = self.get_video_processor()
tokenizer = self.get_tokenizer()
qformer_tokenizer = self.get_qformer_tokenizer()
processor = InstructBlipVideoProcessor(
tokenizer=tokenizer, video_processor=video_processor, qformer_tokenizer=qformer_tokenizer
)
image_input = self.prepare_image_inputs()
input_feat_extract = video_processor(image_input, return_tensors="pt")
input_processor = processor(images=image_input, return_tensors="pt")
for key in input_feat_extract.keys():
self.assertAlmostEqual(input_feat_extract[key].sum(), input_processor[key].sum(), delta=1e-2)
def test_tokenizer(self):
video_processor = self.get_video_processor()
tokenizer = self.get_tokenizer()
qformer_tokenizer = self.get_qformer_tokenizer()
processor = InstructBlipVideoProcessor(
tokenizer=tokenizer, video_processor=video_processor, qformer_tokenizer=qformer_tokenizer
)
input_str = ["lower newer"]
encoded_processor = processor(text=input_str)
encoded_tokens = tokenizer(input_str, return_token_type_ids=False)
encoded_tokens_qformer = qformer_tokenizer(input_str, return_token_type_ids=False)
for key in encoded_tokens.keys():
self.assertListEqual(encoded_tokens[key], encoded_processor[key])
for key in encoded_tokens_qformer.keys():
self.assertListEqual(encoded_tokens_qformer[key], encoded_processor["qformer_" + key])
def test_processor(self):
video_processor = self.get_video_processor()
tokenizer = self.get_tokenizer()
qformer_tokenizer = self.get_qformer_tokenizer()
processor = InstructBlipVideoProcessor(
tokenizer=tokenizer, video_processor=video_processor, qformer_tokenizer=qformer_tokenizer
)
input_str = "lower newer"
image_input = self.prepare_image_inputs()
inputs = processor(text=input_str, images=image_input)
self.assertListEqual(
list(inputs.keys()),
["input_ids", "attention_mask", "qformer_input_ids", "qformer_attention_mask", "pixel_values"],
)
# test if it raises when no input is passed
with pytest.raises(ValueError):
processor()
def test_tokenizer_decode(self):
video_processor = self.get_video_processor()
tokenizer = self.get_tokenizer()
qformer_tokenizer = self.get_qformer_tokenizer()
processor = InstructBlipVideoProcessor(
tokenizer=tokenizer, video_processor=video_processor, qformer_tokenizer=qformer_tokenizer
)
predicted_ids = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]]
decoded_processor = processor.batch_decode(predicted_ids)
decoded_tok = tokenizer.batch_decode(predicted_ids)
self.assertListEqual(decoded_tok, decoded_processor)
def test_model_input_names(self):
video_processor = self.get_video_processor()
tokenizer = self.get_tokenizer()
qformer_tokenizer = self.get_qformer_tokenizer()
processor = InstructBlipVideoProcessor(
tokenizer=tokenizer, video_processor=video_processor, qformer_tokenizer=qformer_tokenizer
)
input_str = "lower newer"
image_input = self.prepare_image_inputs()
inputs = processor(text=input_str, images=image_input)
self.assertListEqual(
list(inputs.keys()),
["input_ids", "attention_mask", "qformer_input_ids", "qformer_attention_mask", "pixel_values"],
)