transformers/tests/models/auto/test_processor_auto.py
Raushan Turganbay a31fa218ad
🔴 Video processors as a separate class (#35206)
* initial design

* update all video processors

* add tests

* need to add qwen2-vl (not tested yet)

* add qwen2-vl in auto map

* fix copies

* isort

* resolve confilicts kinda

* nit:

* qwen2-vl is happy now

* qwen2-5 happy

* other models are happy

* fix copies

* fix tests

* add docs

* CI green now?

* add more tests

* even more changes + tests

* doc builder fail

* nit

* Update src/transformers/models/auto/processing_auto.py

Co-authored-by: Pavel Iakubovskii <qubvel@gmail.com>

* small update

* imports correctly

* dump, otherwise this is getting unmanagebale T-T

* dump

* update

* another update

* update

* tests

* move

* modular

* docs

* test

* another update

* init

* remove flakiness in tests

* fixup

* clean up and remove commented lines

* docs

* skip this one!

* last fix after rebasing

* run fixup

* delete slow files

* remove unnecessary tests + clean up a bit

* small fixes

* fix tests

* more updates

* docs

* fix tests

* update

* style

* fix qwen2-5-vl

* fixup

* fixup

* unflatten batch when preparing

* dump, come back soon

* add docs and fix some tests

* how to guard this with new dummies?

* chat templates in qwen

* address some comments

* remove `Fast` suffix

* fixup

* oops should be imported from transforms

* typo in requires dummies

* new model added with video support

* fixup once more

* last fixup I hope

* revert image processor name + comments

* oh, this is why fetch test is failing

* fix tests

* fix more tests

* fixup

* add new models: internvl, smolvlm

* update docs

* imprt once

* fix failing tests

* do we need to guard it here again, why?

* new model was added, update it

* remove testcase from tester

* fix tests

* make style

* not related CI fail, lets' just fix here

* mark flaky for now, filas 15 out of 100

* style

* maybe we can do this way?

* don't download images in setup class

---------

Co-authored-by: Pavel Iakubovskii <qubvel@gmail.com>
2025-05-12 11:55:51 +02:00

498 lines
23 KiB
Python

# Copyright 2021 the HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import json
import os
import sys
import tempfile
import unittest
from pathlib import Path
from shutil import copyfile
from huggingface_hub import HfFolder, Repository
import transformers
from transformers import (
CONFIG_MAPPING,
FEATURE_EXTRACTOR_MAPPING,
PROCESSOR_MAPPING,
TOKENIZER_MAPPING,
AutoConfig,
AutoFeatureExtractor,
AutoProcessor,
AutoTokenizer,
BertTokenizer,
ProcessorMixin,
Wav2Vec2Config,
Wav2Vec2FeatureExtractor,
Wav2Vec2Processor,
)
from transformers.testing_utils import TOKEN, TemporaryHubRepo, get_tests_dir, is_staging_test
from transformers.tokenization_utils import TOKENIZER_CONFIG_FILE
from transformers.utils import (
FEATURE_EXTRACTOR_NAME,
PROCESSOR_NAME,
is_tokenizers_available,
)
sys.path.append(str(Path(__file__).parent.parent.parent.parent / "utils"))
from test_module.custom_configuration import CustomConfig # noqa E402
from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402
from test_module.custom_processing import CustomProcessor # noqa E402
from test_module.custom_tokenization import CustomTokenizer # noqa E402
SAMPLE_PROCESSOR_CONFIG = get_tests_dir("fixtures/dummy_feature_extractor_config.json")
SAMPLE_VOCAB = get_tests_dir("fixtures/vocab.json")
SAMPLE_PROCESSOR_CONFIG_DIR = get_tests_dir("fixtures")
class AutoFeatureExtractorTest(unittest.TestCase):
vocab_tokens = ["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "bla", "blou"]
def setUp(self):
transformers.dynamic_module_utils.TIME_OUT_REMOTE_CODE = 0
def test_processor_from_model_shortcut(self):
processor = AutoProcessor.from_pretrained("facebook/wav2vec2-base-960h")
self.assertIsInstance(processor, Wav2Vec2Processor)
def test_processor_from_local_directory_from_repo(self):
with tempfile.TemporaryDirectory() as tmpdirname:
model_config = Wav2Vec2Config()
processor = AutoProcessor.from_pretrained("facebook/wav2vec2-base-960h")
# save in new folder
model_config.save_pretrained(tmpdirname)
processor.save_pretrained(tmpdirname)
processor = AutoProcessor.from_pretrained(tmpdirname)
self.assertIsInstance(processor, Wav2Vec2Processor)
def test_processor_from_local_directory_from_extractor_config(self):
with tempfile.TemporaryDirectory() as tmpdirname:
# copy relevant files
copyfile(SAMPLE_PROCESSOR_CONFIG, os.path.join(tmpdirname, FEATURE_EXTRACTOR_NAME))
copyfile(SAMPLE_VOCAB, os.path.join(tmpdirname, "vocab.json"))
processor = AutoProcessor.from_pretrained(tmpdirname)
self.assertIsInstance(processor, Wav2Vec2Processor)
def test_processor_from_processor_class(self):
with tempfile.TemporaryDirectory() as tmpdirname:
feature_extractor = Wav2Vec2FeatureExtractor()
tokenizer = AutoTokenizer.from_pretrained("facebook/wav2vec2-base-960h")
processor = Wav2Vec2Processor(feature_extractor, tokenizer)
# save in new folder
processor.save_pretrained(tmpdirname)
if not os.path.isfile(os.path.join(tmpdirname, PROCESSOR_NAME)):
# create one manually in order to perform this test's objective
config_dict = {"processor_class": "Wav2Vec2Processor"}
with open(os.path.join(tmpdirname, PROCESSOR_NAME), "w") as fp:
json.dump(config_dict, fp)
# drop `processor_class` in tokenizer config
with open(os.path.join(tmpdirname, TOKENIZER_CONFIG_FILE)) as f:
config_dict = json.load(f)
config_dict.pop("processor_class")
with open(os.path.join(tmpdirname, TOKENIZER_CONFIG_FILE), "w") as f:
f.write(json.dumps(config_dict))
processor = AutoProcessor.from_pretrained(tmpdirname)
self.assertIsInstance(processor, Wav2Vec2Processor)
def test_processor_from_feat_extr_processor_class(self):
with tempfile.TemporaryDirectory() as tmpdirname:
feature_extractor = Wav2Vec2FeatureExtractor()
tokenizer = AutoTokenizer.from_pretrained("facebook/wav2vec2-base-960h")
processor = Wav2Vec2Processor(feature_extractor, tokenizer)
# save in new folder
processor.save_pretrained(tmpdirname)
if os.path.isfile(os.path.join(tmpdirname, PROCESSOR_NAME)):
# drop `processor_class` in processor
with open(os.path.join(tmpdirname, PROCESSOR_NAME)) as f:
config_dict = json.load(f)
config_dict.pop("processor_class")
with open(os.path.join(tmpdirname, PROCESSOR_NAME), "w") as f:
f.write(json.dumps(config_dict))
# drop `processor_class` in tokenizer
with open(os.path.join(tmpdirname, TOKENIZER_CONFIG_FILE)) as f:
config_dict = json.load(f)
config_dict.pop("processor_class")
with open(os.path.join(tmpdirname, TOKENIZER_CONFIG_FILE), "w") as f:
f.write(json.dumps(config_dict))
processor = AutoProcessor.from_pretrained(tmpdirname)
self.assertIsInstance(processor, Wav2Vec2Processor)
def test_processor_from_tokenizer_processor_class(self):
with tempfile.TemporaryDirectory() as tmpdirname:
feature_extractor = Wav2Vec2FeatureExtractor()
tokenizer = AutoTokenizer.from_pretrained("facebook/wav2vec2-base-960h")
processor = Wav2Vec2Processor(feature_extractor, tokenizer)
# save in new folder
processor.save_pretrained(tmpdirname)
if os.path.isfile(os.path.join(tmpdirname, PROCESSOR_NAME)):
# drop `processor_class` in processor
with open(os.path.join(tmpdirname, PROCESSOR_NAME)) as f:
config_dict = json.load(f)
config_dict.pop("processor_class")
with open(os.path.join(tmpdirname, PROCESSOR_NAME), "w") as f:
f.write(json.dumps(config_dict))
# drop `processor_class` in feature extractor
with open(os.path.join(tmpdirname, FEATURE_EXTRACTOR_NAME)) as f:
config_dict = json.load(f)
config_dict.pop("processor_class")
with open(os.path.join(tmpdirname, FEATURE_EXTRACTOR_NAME), "w") as f:
f.write(json.dumps(config_dict))
processor = AutoProcessor.from_pretrained(tmpdirname)
self.assertIsInstance(processor, Wav2Vec2Processor)
def test_processor_from_local_directory_from_model_config(self):
with tempfile.TemporaryDirectory() as tmpdirname:
model_config = Wav2Vec2Config(processor_class="Wav2Vec2Processor")
model_config.save_pretrained(tmpdirname)
# copy relevant files
copyfile(SAMPLE_VOCAB, os.path.join(tmpdirname, "vocab.json"))
# create empty sample processor
with open(os.path.join(tmpdirname, FEATURE_EXTRACTOR_NAME), "w") as f:
f.write("{}")
processor = AutoProcessor.from_pretrained(tmpdirname)
self.assertIsInstance(processor, Wav2Vec2Processor)
def test_from_pretrained_dynamic_processor(self):
# If remote code is not set, we will time out when asking whether to load the model.
with self.assertRaises(ValueError):
processor = AutoProcessor.from_pretrained("hf-internal-testing/test_dynamic_processor")
# If remote code is disabled, we can't load this config.
with self.assertRaises(ValueError):
processor = AutoProcessor.from_pretrained(
"hf-internal-testing/test_dynamic_processor", trust_remote_code=False
)
processor = AutoProcessor.from_pretrained("hf-internal-testing/test_dynamic_processor", trust_remote_code=True)
self.assertTrue(processor.special_attribute_present)
self.assertEqual(processor.__class__.__name__, "NewProcessor")
feature_extractor = processor.feature_extractor
self.assertTrue(feature_extractor.special_attribute_present)
self.assertEqual(feature_extractor.__class__.__name__, "NewFeatureExtractor")
tokenizer = processor.tokenizer
self.assertTrue(tokenizer.special_attribute_present)
if is_tokenizers_available():
self.assertEqual(tokenizer.__class__.__name__, "NewTokenizerFast")
# Test we can also load the slow version
new_processor = AutoProcessor.from_pretrained(
"hf-internal-testing/test_dynamic_processor", trust_remote_code=True, use_fast=False
)
new_tokenizer = new_processor.tokenizer
self.assertTrue(new_tokenizer.special_attribute_present)
self.assertEqual(new_tokenizer.__class__.__name__, "NewTokenizer")
else:
self.assertEqual(tokenizer.__class__.__name__, "NewTokenizer")
def test_new_processor_registration(self):
try:
AutoConfig.register("custom", CustomConfig)
AutoFeatureExtractor.register(CustomConfig, CustomFeatureExtractor)
AutoTokenizer.register(CustomConfig, slow_tokenizer_class=CustomTokenizer)
AutoProcessor.register(CustomConfig, CustomProcessor)
# Trying to register something existing in the Transformers library will raise an error
with self.assertRaises(ValueError):
AutoProcessor.register(Wav2Vec2Config, Wav2Vec2Processor)
# Now that the config is registered, it can be used as any other config with the auto-API
feature_extractor = CustomFeatureExtractor.from_pretrained(SAMPLE_PROCESSOR_CONFIG_DIR)
with tempfile.TemporaryDirectory() as tmp_dir:
vocab_file = os.path.join(tmp_dir, "vocab.txt")
with open(vocab_file, "w", encoding="utf-8") as vocab_writer:
vocab_writer.write("".join([x + "\n" for x in self.vocab_tokens]))
tokenizer = CustomTokenizer(vocab_file)
processor = CustomProcessor(feature_extractor, tokenizer)
with tempfile.TemporaryDirectory() as tmp_dir:
processor.save_pretrained(tmp_dir)
new_processor = AutoProcessor.from_pretrained(tmp_dir)
self.assertIsInstance(new_processor, CustomProcessor)
finally:
if "custom" in CONFIG_MAPPING._extra_content:
del CONFIG_MAPPING._extra_content["custom"]
if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content:
del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig]
if CustomConfig in TOKENIZER_MAPPING._extra_content:
del TOKENIZER_MAPPING._extra_content[CustomConfig]
if CustomConfig in PROCESSOR_MAPPING._extra_content:
del PROCESSOR_MAPPING._extra_content[CustomConfig]
def test_from_pretrained_dynamic_processor_conflict(self):
class NewFeatureExtractor(Wav2Vec2FeatureExtractor):
special_attribute_present = False
class NewTokenizer(BertTokenizer):
special_attribute_present = False
class NewProcessor(ProcessorMixin):
feature_extractor_class = "AutoFeatureExtractor"
tokenizer_class = "AutoTokenizer"
special_attribute_present = False
try:
AutoConfig.register("custom", CustomConfig)
AutoFeatureExtractor.register(CustomConfig, NewFeatureExtractor)
AutoTokenizer.register(CustomConfig, slow_tokenizer_class=NewTokenizer)
AutoProcessor.register(CustomConfig, NewProcessor)
# If remote code is not set, the default is to use local classes.
processor = AutoProcessor.from_pretrained("hf-internal-testing/test_dynamic_processor")
self.assertEqual(processor.__class__.__name__, "NewProcessor")
self.assertFalse(processor.special_attribute_present)
self.assertFalse(processor.feature_extractor.special_attribute_present)
self.assertFalse(processor.tokenizer.special_attribute_present)
# If remote code is disabled, we load the local ones.
processor = AutoProcessor.from_pretrained(
"hf-internal-testing/test_dynamic_processor", trust_remote_code=False
)
self.assertEqual(processor.__class__.__name__, "NewProcessor")
self.assertFalse(processor.special_attribute_present)
self.assertFalse(processor.feature_extractor.special_attribute_present)
self.assertFalse(processor.tokenizer.special_attribute_present)
# If remote is enabled, we load from the Hub.
processor = AutoProcessor.from_pretrained(
"hf-internal-testing/test_dynamic_processor", trust_remote_code=True
)
self.assertEqual(processor.__class__.__name__, "NewProcessor")
self.assertTrue(processor.special_attribute_present)
self.assertTrue(processor.feature_extractor.special_attribute_present)
self.assertTrue(processor.tokenizer.special_attribute_present)
finally:
if "custom" in CONFIG_MAPPING._extra_content:
del CONFIG_MAPPING._extra_content["custom"]
if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content:
del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig]
if CustomConfig in TOKENIZER_MAPPING._extra_content:
del TOKENIZER_MAPPING._extra_content[CustomConfig]
if CustomConfig in PROCESSOR_MAPPING._extra_content:
del PROCESSOR_MAPPING._extra_content[CustomConfig]
def test_from_pretrained_dynamic_processor_with_extra_attributes(self):
class NewFeatureExtractor(Wav2Vec2FeatureExtractor):
pass
class NewTokenizer(BertTokenizer):
pass
class NewProcessor(ProcessorMixin):
feature_extractor_class = "AutoFeatureExtractor"
tokenizer_class = "AutoTokenizer"
def __init__(self, feature_extractor, tokenizer, processor_attr_1=1, processor_attr_2=True):
super().__init__(feature_extractor, tokenizer)
self.processor_attr_1 = processor_attr_1
self.processor_attr_2 = processor_attr_2
try:
AutoConfig.register("custom", CustomConfig)
AutoFeatureExtractor.register(CustomConfig, NewFeatureExtractor)
AutoTokenizer.register(CustomConfig, slow_tokenizer_class=NewTokenizer)
AutoProcessor.register(CustomConfig, NewProcessor)
# If remote code is not set, the default is to use local classes.
processor = AutoProcessor.from_pretrained(
"hf-internal-testing/test_dynamic_processor", processor_attr_2=False
)
self.assertEqual(processor.__class__.__name__, "NewProcessor")
self.assertEqual(processor.processor_attr_1, 1)
self.assertEqual(processor.processor_attr_2, False)
finally:
if "custom" in CONFIG_MAPPING._extra_content:
del CONFIG_MAPPING._extra_content["custom"]
if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content:
del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig]
if CustomConfig in TOKENIZER_MAPPING._extra_content:
del TOKENIZER_MAPPING._extra_content[CustomConfig]
if CustomConfig in PROCESSOR_MAPPING._extra_content:
del PROCESSOR_MAPPING._extra_content[CustomConfig]
def test_dynamic_processor_with_specific_dynamic_subcomponents(self):
class NewFeatureExtractor(Wav2Vec2FeatureExtractor):
pass
class NewTokenizer(BertTokenizer):
pass
class NewProcessor(ProcessorMixin):
feature_extractor_class = "NewFeatureExtractor"
tokenizer_class = "NewTokenizer"
def __init__(self, feature_extractor, tokenizer):
super().__init__(feature_extractor, tokenizer)
try:
AutoConfig.register("custom", CustomConfig)
AutoFeatureExtractor.register(CustomConfig, NewFeatureExtractor)
AutoTokenizer.register(CustomConfig, slow_tokenizer_class=NewTokenizer)
AutoProcessor.register(CustomConfig, NewProcessor)
# If remote code is not set, the default is to use local classes.
processor = AutoProcessor.from_pretrained(
"hf-internal-testing/test_dynamic_processor",
)
self.assertEqual(processor.__class__.__name__, "NewProcessor")
finally:
if "custom" in CONFIG_MAPPING._extra_content:
del CONFIG_MAPPING._extra_content["custom"]
if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content:
del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig]
if CustomConfig in TOKENIZER_MAPPING._extra_content:
del TOKENIZER_MAPPING._extra_content[CustomConfig]
if CustomConfig in PROCESSOR_MAPPING._extra_content:
del PROCESSOR_MAPPING._extra_content[CustomConfig]
def test_auto_processor_creates_tokenizer(self):
processor = AutoProcessor.from_pretrained("hf-internal-testing/tiny-random-bert")
self.assertEqual(processor.__class__.__name__, "BertTokenizerFast")
def test_auto_processor_creates_image_processor(self):
processor = AutoProcessor.from_pretrained("hf-internal-testing/tiny-random-convnext")
self.assertEqual(processor.__class__.__name__, "ConvNextImageProcessor")
def test_auto_processor_save_load(self):
processor = AutoProcessor.from_pretrained("llava-hf/llava-onevision-qwen2-0.5b-ov-hf")
with tempfile.TemporaryDirectory() as tmp_dir:
processor.save_pretrained(tmp_dir)
second_processor = AutoProcessor.from_pretrained(tmp_dir)
self.assertEqual(second_processor.__class__.__name__, processor.__class__.__name__)
@is_staging_test
class ProcessorPushToHubTester(unittest.TestCase):
vocab_tokens = ["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "bla", "blou"]
@classmethod
def setUpClass(cls):
cls._token = TOKEN
HfFolder.save_token(TOKEN)
def test_push_to_hub_via_save_pretrained(self):
with TemporaryHubRepo(token=self._token) as tmp_repo:
processor = Wav2Vec2Processor.from_pretrained(SAMPLE_PROCESSOR_CONFIG_DIR)
# Push to hub via save_pretrained
with tempfile.TemporaryDirectory() as tmp_dir:
processor.save_pretrained(tmp_dir, repo_id=tmp_repo.repo_id, push_to_hub=True, token=self._token)
new_processor = Wav2Vec2Processor.from_pretrained(tmp_repo.repo_id)
for k, v in processor.feature_extractor.__dict__.items():
self.assertEqual(v, getattr(new_processor.feature_extractor, k))
self.assertDictEqual(new_processor.tokenizer.get_vocab(), processor.tokenizer.get_vocab())
def test_push_to_hub_in_organization_via_save_pretrained(self):
with TemporaryHubRepo(namespace="valid_org", token=self._token) as tmp_repo:
processor = Wav2Vec2Processor.from_pretrained(SAMPLE_PROCESSOR_CONFIG_DIR)
# Push to hub via save_pretrained
with tempfile.TemporaryDirectory() as tmp_dir:
processor.save_pretrained(
tmp_dir,
repo_id=tmp_repo.repo_id,
push_to_hub=True,
token=self._token,
)
new_processor = Wav2Vec2Processor.from_pretrained(tmp_repo.repo_id)
for k, v in processor.feature_extractor.__dict__.items():
self.assertEqual(v, getattr(new_processor.feature_extractor, k))
self.assertDictEqual(new_processor.tokenizer.get_vocab(), processor.tokenizer.get_vocab())
def test_push_to_hub_dynamic_processor(self):
with TemporaryHubRepo(token=self._token) as tmp_repo:
CustomFeatureExtractor.register_for_auto_class()
CustomTokenizer.register_for_auto_class()
CustomProcessor.register_for_auto_class()
feature_extractor = CustomFeatureExtractor.from_pretrained(SAMPLE_PROCESSOR_CONFIG_DIR)
with tempfile.TemporaryDirectory() as tmp_dir:
vocab_file = os.path.join(tmp_dir, "vocab.txt")
with open(vocab_file, "w", encoding="utf-8") as vocab_writer:
vocab_writer.write("".join([x + "\n" for x in self.vocab_tokens]))
tokenizer = CustomTokenizer(vocab_file)
processor = CustomProcessor(feature_extractor, tokenizer)
with tempfile.TemporaryDirectory() as tmp_dir:
repo = Repository(tmp_dir, clone_from=tmp_repo, token=self._token)
processor.save_pretrained(tmp_dir)
# This has added the proper auto_map field to the feature extractor config
self.assertDictEqual(
processor.feature_extractor.auto_map,
{
"AutoFeatureExtractor": "custom_feature_extraction.CustomFeatureExtractor",
"AutoProcessor": "custom_processing.CustomProcessor",
},
)
# This has added the proper auto_map field to the tokenizer config
with open(os.path.join(tmp_dir, "tokenizer_config.json")) as f:
tokenizer_config = json.load(f)
self.assertDictEqual(
tokenizer_config["auto_map"],
{
"AutoTokenizer": ["custom_tokenization.CustomTokenizer", None],
"AutoProcessor": "custom_processing.CustomProcessor",
},
)
# The code has been copied from fixtures
self.assertTrue(os.path.isfile(os.path.join(tmp_dir, "custom_feature_extraction.py")))
self.assertTrue(os.path.isfile(os.path.join(tmp_dir, "custom_tokenization.py")))
self.assertTrue(os.path.isfile(os.path.join(tmp_dir, "custom_processing.py")))
repo.push_to_hub()
new_processor = AutoProcessor.from_pretrained(tmp_repo.repo_id, trust_remote_code=True)
# Can't make an isinstance check because the new_processor is from the CustomProcessor class of a dynamic module
self.assertEqual(new_processor.__class__.__name__, "CustomProcessor")