transformers/docs/source/index.rst
Matt 3a8a8013ad
Keras callback to push to hub each epoch, or after N steps (#13773)
* Keras callback to push to hub each epoch, or after N steps

* Reworked the callback to use Repository

* Use an Enum for save_strategy

* Style pass

* Correct type for tokenizer

* Update src/transformers/keras_callbacks.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/keras_callbacks.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/keras_callbacks.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/keras_callbacks.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/keras_callbacks.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/keras_callbacks.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Adding print message to the final upload

* Adding print message to the final upload

* Change how we wait for the last process to finish

* is_done is a property, not a method, derp

* Docstrings and documentation

* Style pass

* Style edit

* Docstring reformat

* Docstring rewrite

* Replacing print with internal logger

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2021-09-29 12:47:35 +01:00

645 lines
47 KiB
ReStructuredText
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

Transformers
=======================================================================================================================
State-of-the-art Natural Language Processing for Jax, Pytorch and TensorFlow
🤗 Transformers (formerly known as `pytorch-transformers` and `pytorch-pretrained-bert`) provides general-purpose
architectures (BERT, GPT-2, RoBERTa, XLM, DistilBert, XLNet...) for Natural Language Understanding (NLU) and Natural
Language Generation (NLG) with over 32+ pretrained models in 100+ languages and deep interoperability between Jax,
PyTorch and TensorFlow.
This is the documentation of our repository `transformers <https://github.com/huggingface/transformers>`__. You can
also follow our `online course <https://huggingface.co/course>`__ that teaches how to use this library, as well as the
other libraries developed by Hugging Face and the Hub.
If you are looking for custom support from the Hugging Face team
-----------------------------------------------------------------------------------------------------------------------
.. raw:: html
<a target="_blank" href="https://huggingface.co/support">
<img alt="HuggingFace Expert Acceleration Program" src="https://huggingface.co/front/thumbnails/support.png" style="max-width: 600px; border: 1px solid #eee; border-radius: 4px; box-shadow: 0 1px 2px 0 rgba(0, 0, 0, 0.05);">
</a><br>
Features
-----------------------------------------------------------------------------------------------------------------------
- High performance on NLU and NLG tasks
- Low barrier to entry for educators and practitioners
State-of-the-art NLP for everyone:
- Deep learning researchers
- Hands-on practitioners
- AI/ML/NLP teachers and educators
..
Copyright 2020 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
Lower compute costs, smaller carbon footprint:
- Researchers can share trained models instead of always retraining
- Practitioners can reduce compute time and production costs
- 8 architectures with over 30 pretrained models, some in more than 100 languages
Choose the right framework for every part of a model's lifetime:
- Train state-of-the-art models in 3 lines of code
- Deep interoperability between Jax, Pytorch and TensorFlow models
- Move a single model between Jax/PyTorch/TensorFlow frameworks at will
- Seamlessly pick the right framework for training, evaluation, production
The support for Jax is still experimental (with a few models right now), expect to see it grow in the coming months!
`All the model checkpoints <https://huggingface.co/models>`__ are seamlessly integrated from the huggingface.co `model
hub <https://huggingface.co>`__ where they are uploaded directly by `users <https://huggingface.co/users>`__ and
`organizations <https://huggingface.co/organizations>`__.
Current number of checkpoints: |checkpoints|
.. |checkpoints| image:: https://img.shields.io/endpoint?url=https://huggingface.co/api/shields/models&color=brightgreen
Contents
-----------------------------------------------------------------------------------------------------------------------
The documentation is organized in five parts:
- **GET STARTED** contains a quick tour, the installation instructions and some useful information about our philosophy
and a glossary.
- **USING 🤗 TRANSFORMERS** contains general tutorials on how to use the library.
- **ADVANCED GUIDES** contains more advanced guides that are more specific to a given script or part of the library.
- **RESEARCH** focuses on tutorials that have less to do with how to use the library but more about general research in
transformers model
- The three last section contain the documentation of each public class and function, grouped in:
- **MAIN CLASSES** for the main classes exposing the important APIs of the library.
- **MODELS** for the classes and functions related to each model implemented in the library.
- **INTERNAL HELPERS** for the classes and functions we use internally.
The library currently contains Jax, PyTorch and Tensorflow implementations, pretrained model weights, usage scripts and
conversion utilities for the following models.
Supported models
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
..
This list is updated automatically from the README with `make fix-copies`. Do not update manually!
1. :doc:`ALBERT <model_doc/albert>` (from Google Research and the Toyota Technological Institute at Chicago) released
with the paper `ALBERT: A Lite BERT for Self-supervised Learning of Language Representations
<https://arxiv.org/abs/1909.11942>`__, by Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush
Sharma, Radu Soricut.
2. :doc:`BART <model_doc/bart>` (from Facebook) released with the paper `BART: Denoising Sequence-to-Sequence
Pre-training for Natural Language Generation, Translation, and Comprehension
<https://arxiv.org/pdf/1910.13461.pdf>`__ by Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman
Mohamed, Omer Levy, Ves Stoyanov and Luke Zettlemoyer.
3. :doc:`BARThez <model_doc/barthez>` (from École polytechnique) released with the paper `BARThez: a Skilled Pretrained
French Sequence-to-Sequence Model <https://arxiv.org/abs/2010.12321>`__ by Moussa Kamal Eddine, Antoine J.-P.
Tixier, Michalis Vazirgiannis.
4. :doc:`BEiT <model_doc/beit>` (from Microsoft) released with the paper `BEiT: BERT Pre-Training of Image Transformers
<https://arxiv.org/abs/2106.08254>`__ by Hangbo Bao, Li Dong, Furu Wei.
5. :doc:`BERT <model_doc/bert>` (from Google) released with the paper `BERT: Pre-training of Deep Bidirectional
Transformers for Language Understanding <https://arxiv.org/abs/1810.04805>`__ by Jacob Devlin, Ming-Wei Chang,
Kenton Lee and Kristina Toutanova.
6. :doc:`BERT For Sequence Generation <model_doc/bertgeneration>` (from Google) released with the paper `Leveraging
Pre-trained Checkpoints for Sequence Generation Tasks <https://arxiv.org/abs/1907.12461>`__ by Sascha Rothe, Shashi
Narayan, Aliaksei Severyn.
7. :doc:`BigBird-RoBERTa <model_doc/bigbird>` (from Google Research) released with the paper `Big Bird: Transformers
for Longer Sequences <https://arxiv.org/abs/2007.14062>`__ by Manzil Zaheer, Guru Guruganesh, Avinava Dubey, Joshua
Ainslie, Chris Alberti, Santiago Ontanon, Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang, Amr Ahmed.
8. :doc:`BigBird-Pegasus <model_doc/bigbird_pegasus>` (from Google Research) released with the paper `Big Bird:
Transformers for Longer Sequences <https://arxiv.org/abs/2007.14062>`__ by Manzil Zaheer, Guru Guruganesh, Avinava
Dubey, Joshua Ainslie, Chris Alberti, Santiago Ontanon, Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang, Amr Ahmed.
9. :doc:`Blenderbot <model_doc/blenderbot>` (from Facebook) released with the paper `Recipes for building an
open-domain chatbot <https://arxiv.org/abs/2004.13637>`__ by Stephen Roller, Emily Dinan, Naman Goyal, Da Ju, Mary
Williamson, Yinhan Liu, Jing Xu, Myle Ott, Kurt Shuster, Eric M. Smith, Y-Lan Boureau, Jason Weston.
10. :doc:`BlenderbotSmall <model_doc/blenderbot_small>` (from Facebook) released with the paper `Recipes for building
an open-domain chatbot <https://arxiv.org/abs/2004.13637>`__ by Stephen Roller, Emily Dinan, Naman Goyal, Da Ju,
Mary Williamson, Yinhan Liu, Jing Xu, Myle Ott, Kurt Shuster, Eric M. Smith, Y-Lan Boureau, Jason Weston.
11. :doc:`BORT <model_doc/bort>` (from Alexa) released with the paper `Optimal Subarchitecture Extraction For BERT
<https://arxiv.org/abs/2010.10499>`__ by Adrian de Wynter and Daniel J. Perry.
12. :doc:`ByT5 <model_doc/byt5>` (from Google Research) released with the paper `ByT5: Towards a token-free future with
pre-trained byte-to-byte models <https://arxiv.org/abs/2105.13626>`__ by Linting Xue, Aditya Barua, Noah Constant,
Rami Al-Rfou, Sharan Narang, Mihir Kale, Adam Roberts, Colin Raffel.
13. :doc:`CamemBERT <model_doc/camembert>` (from Inria/Facebook/Sorbonne) released with the paper `CamemBERT: a Tasty
French Language Model <https://arxiv.org/abs/1911.03894>`__ by Louis Martin*, Benjamin Muller*, Pedro Javier Ortiz
Suárez*, Yoann Dupont, Laurent Romary, Éric Villemonte de la Clergerie, Djamé Seddah and Benoît Sagot.
14. :doc:`CANINE <model_doc/canine>` (from Google Research) released with the paper `CANINE: Pre-training an Efficient
Tokenization-Free Encoder for Language Representation <https://arxiv.org/abs/2103.06874>`__ by Jonathan H. Clark,
Dan Garrette, Iulia Turc, John Wieting.
15. :doc:`CLIP <model_doc/clip>` (from OpenAI) released with the paper `Learning Transferable Visual Models From
Natural Language Supervision <https://arxiv.org/abs/2103.00020>`__ by Alec Radford, Jong Wook Kim, Chris Hallacy,
Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen
Krueger, Ilya Sutskever.
16. :doc:`ConvBERT <model_doc/convbert>` (from YituTech) released with the paper `ConvBERT: Improving BERT with
Span-based Dynamic Convolution <https://arxiv.org/abs/2008.02496>`__ by Zihang Jiang, Weihao Yu, Daquan Zhou,
Yunpeng Chen, Jiashi Feng, Shuicheng Yan.
17. :doc:`CPM <model_doc/cpm>` (from Tsinghua University) released with the paper `CPM: A Large-scale Generative
Chinese Pre-trained Language Model <https://arxiv.org/abs/2012.00413>`__ by Zhengyan Zhang, Xu Han, Hao Zhou, Pei
Ke, Yuxian Gu, Deming Ye, Yujia Qin, Yusheng Su, Haozhe Ji, Jian Guan, Fanchao Qi, Xiaozhi Wang, Yanan Zheng,
Guoyang Zeng, Huanqi Cao, Shengqi Chen, Daixuan Li, Zhenbo Sun, Zhiyuan Liu, Minlie Huang, Wentao Han, Jie Tang,
Juanzi Li, Xiaoyan Zhu, Maosong Sun.
18. :doc:`CTRL <model_doc/ctrl>` (from Salesforce) released with the paper `CTRL: A Conditional Transformer Language
Model for Controllable Generation <https://arxiv.org/abs/1909.05858>`__ by Nitish Shirish Keskar*, Bryan McCann*,
Lav R. Varshney, Caiming Xiong and Richard Socher.
19. :doc:`DeBERTa <model_doc/deberta>` (from Microsoft) released with the paper `DeBERTa: Decoding-enhanced BERT with
Disentangled Attention <https://arxiv.org/abs/2006.03654>`__ by Pengcheng He, Xiaodong Liu, Jianfeng Gao, Weizhu
Chen.
20. :doc:`DeBERTa-v2 <model_doc/deberta_v2>` (from Microsoft) released with the paper `DeBERTa: Decoding-enhanced BERT
with Disentangled Attention <https://arxiv.org/abs/2006.03654>`__ by Pengcheng He, Xiaodong Liu, Jianfeng Gao,
Weizhu Chen.
21. :doc:`DeiT <model_doc/deit>` (from Facebook) released with the paper `Training data-efficient image transformers &
distillation through attention <https://arxiv.org/abs/2012.12877>`__ by Hugo Touvron, Matthieu Cord, Matthijs
Douze, Francisco Massa, Alexandre Sablayrolles, Hervé Jégou.
22. :doc:`DETR <model_doc/detr>` (from Facebook) released with the paper `End-to-End Object Detection with Transformers
<https://arxiv.org/abs/2005.12872>`__ by Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier,
Alexander Kirillov, Sergey Zagoruyko.
23. :doc:`DialoGPT <model_doc/dialogpt>` (from Microsoft Research) released with the paper `DialoGPT: Large-Scale
Generative Pre-training for Conversational Response Generation <https://arxiv.org/abs/1911.00536>`__ by Yizhe
Zhang, Siqi Sun, Michel Galley, Yen-Chun Chen, Chris Brockett, Xiang Gao, Jianfeng Gao, Jingjing Liu, Bill Dolan.
24. :doc:`DistilBERT <model_doc/distilbert>` (from HuggingFace), released together with the paper `DistilBERT, a
distilled version of BERT: smaller, faster, cheaper and lighter <https://arxiv.org/abs/1910.01108>`__ by Victor
Sanh, Lysandre Debut and Thomas Wolf. The same method has been applied to compress GPT2 into `DistilGPT2
<https://github.com/huggingface/transformers/tree/master/examples/distillation>`__, RoBERTa into `DistilRoBERTa
<https://github.com/huggingface/transformers/tree/master/examples/distillation>`__, Multilingual BERT into
`DistilmBERT <https://github.com/huggingface/transformers/tree/master/examples/distillation>`__ and a German
version of DistilBERT.
25. :doc:`DPR <model_doc/dpr>` (from Facebook) released with the paper `Dense Passage Retrieval for Open-Domain
Question Answering <https://arxiv.org/abs/2004.04906>`__ by Vladimir Karpukhin, Barlas Oğuz, Sewon Min, Patrick
Lewis, Ledell Wu, Sergey Edunov, Danqi Chen, and Wen-tau Yih.
26. :doc:`EncoderDecoder <model_doc/encoderdecoder>` (from Google Research) released with the paper `Leveraging
Pre-trained Checkpoints for Sequence Generation Tasks <https://arxiv.org/abs/1907.12461>`__ by Sascha Rothe, Shashi
Narayan, Aliaksei Severyn.
27. :doc:`ELECTRA <model_doc/electra>` (from Google Research/Stanford University) released with the paper `ELECTRA:
Pre-training text encoders as discriminators rather than generators <https://arxiv.org/abs/2003.10555>`__ by Kevin
Clark, Minh-Thang Luong, Quoc V. Le, Christopher D. Manning.
28. :doc:`FlauBERT <model_doc/flaubert>` (from CNRS) released with the paper `FlauBERT: Unsupervised Language Model
Pre-training for French <https://arxiv.org/abs/1912.05372>`__ by Hang Le, Loïc Vial, Jibril Frej, Vincent Segonne,
Maximin Coavoux, Benjamin Lecouteux, Alexandre Allauzen, Benoît Crabbé, Laurent Besacier, Didier Schwab.
29. :doc:`FNet <model_doc/fnet>` (from Google Research) released with the paper `FNet: Mixing Tokens with Fourier
Transforms <https://arxiv.org/abs/2105.03824>`__ by James Lee-Thorp, Joshua Ainslie, Ilya Eckstein, Santiago
Ontanon.
30. :doc:`Funnel Transformer <model_doc/funnel>` (from CMU/Google Brain) released with the paper `Funnel-Transformer:
Filtering out Sequential Redundancy for Efficient Language Processing <https://arxiv.org/abs/2006.03236>`__ by
Zihang Dai, Guokun Lai, Yiming Yang, Quoc V. Le.
31. :doc:`GPT <model_doc/gpt>` (from OpenAI) released with the paper `Improving Language Understanding by Generative
Pre-Training <https://blog.openai.com/language-unsupervised/>`__ by Alec Radford, Karthik Narasimhan, Tim Salimans
and Ilya Sutskever.
32. :doc:`GPT-2 <model_doc/gpt2>` (from OpenAI) released with the paper `Language Models are Unsupervised Multitask
Learners <https://blog.openai.com/better-language-models/>`__ by Alec Radford*, Jeffrey Wu*, Rewon Child, David
Luan, Dario Amodei** and Ilya Sutskever**.
33. :doc:`GPT-J <model_doc/gptj>` (from EleutherAI) released in the repository `kingoflolz/mesh-transformer-jax
<https://github.com/kingoflolz/mesh-transformer-jax/>`__ by Ben Wang and Aran Komatsuzaki.
34. :doc:`GPT Neo <model_doc/gpt_neo>` (from EleutherAI) released in the repository `EleutherAI/gpt-neo
<https://github.com/EleutherAI/gpt-neo>`__ by Sid Black, Stella Biderman, Leo Gao, Phil Wang and Connor Leahy.
35. :doc:`Hubert <model_doc/hubert>` (from Facebook) released with the paper `HuBERT: Self-Supervised Speech
Representation Learning by Masked Prediction of Hidden Units <https://arxiv.org/abs/2106.07447>`__ by Wei-Ning Hsu,
Benjamin Bolte, Yao-Hung Hubert Tsai, Kushal Lakhotia, Ruslan Salakhutdinov, Abdelrahman Mohamed.
36. :doc:`I-BERT <model_doc/ibert>` (from Berkeley) released with the paper `I-BERT: Integer-only BERT Quantization
<https://arxiv.org/abs/2101.01321>`__ by Sehoon Kim, Amir Gholami, Zhewei Yao, Michael W. Mahoney, Kurt Keutzer.
37. :doc:`LayoutLM <model_doc/layoutlm>` (from Microsoft Research Asia) released with the paper `LayoutLM: Pre-training
of Text and Layout for Document Image Understanding <https://arxiv.org/abs/1912.13318>`__ by Yiheng Xu, Minghao Li,
Lei Cui, Shaohan Huang, Furu Wei, Ming Zhou.
38. :doc:`LayoutLMv2 <model_doc/layoutlmv2>` (from Microsoft Research Asia) released with the paper `LayoutLMv2:
Multi-modal Pre-training for Visually-Rich Document Understanding <https://arxiv.org/abs/2012.14740>`__ by Yang Xu,
Yiheng Xu, Tengchao Lv, Lei Cui, Furu Wei, Guoxin Wang, Yijuan Lu, Dinei Florencio, Cha Zhang, Wanxiang Che, Min
Zhang, Lidong Zhou.
39. :doc:`LayoutXLM <model_doc/layoutlmv2>` (from Microsoft Research Asia) released with the paper `LayoutXLM:
Multimodal Pre-training for Multilingual Visually-rich Document Understanding <https://arxiv.org/abs/2104.08836>`__
by Yiheng Xu, Tengchao Lv, Lei Cui, Guoxin Wang, Yijuan Lu, Dinei Florencio, Cha Zhang, Furu Wei.
40. :doc:`LED <model_doc/led>` (from AllenAI) released with the paper `Longformer: The Long-Document Transformer
<https://arxiv.org/abs/2004.05150>`__ by Iz Beltagy, Matthew E. Peters, Arman Cohan.
41. :doc:`Longformer <model_doc/longformer>` (from AllenAI) released with the paper `Longformer: The Long-Document
Transformer <https://arxiv.org/abs/2004.05150>`__ by Iz Beltagy, Matthew E. Peters, Arman Cohan.
42. :doc:`LUKE <model_doc/luke>` (from Studio Ousia) released with the paper `LUKE: Deep Contextualized Entity
Representations with Entity-aware Self-attention <https://arxiv.org/abs/2010.01057>`__ by Ikuya Yamada, Akari Asai,
Hiroyuki Shindo, Hideaki Takeda, Yuji Matsumoto.
43. :doc:`LXMERT <model_doc/lxmert>` (from UNC Chapel Hill) released with the paper `LXMERT: Learning Cross-Modality
Encoder Representations from Transformers for Open-Domain Question Answering <https://arxiv.org/abs/1908.07490>`__
by Hao Tan and Mohit Bansal.
44. :doc:`M2M100 <model_doc/m2m_100>` (from Facebook) released with the paper `Beyond English-Centric Multilingual
Machine Translation <https://arxiv.org/abs/2010.11125>`__ by Angela Fan, Shruti Bhosale, Holger Schwenk, Zhiyi Ma,
Ahmed El-Kishky, Siddharth Goyal, Mandeep Baines, Onur Celebi, Guillaume Wenzek, Vishrav Chaudhary, Naman Goyal,
Tom Birch, Vitaliy Liptchinsky, Sergey Edunov, Edouard Grave, Michael Auli, Armand Joulin.
45. :doc:`MarianMT <model_doc/marian>` Machine translation models trained using `OPUS <http://opus.nlpl.eu/>`__ data by
Jörg Tiedemann. The `Marian Framework <https://marian-nmt.github.io/>`__ is being developed by the Microsoft
Translator Team.
46. :doc:`MBart <model_doc/mbart>` (from Facebook) released with the paper `Multilingual Denoising Pre-training for
Neural Machine Translation <https://arxiv.org/abs/2001.08210>`__ by Yinhan Liu, Jiatao Gu, Naman Goyal, Xian Li,
Sergey Edunov, Marjan Ghazvininejad, Mike Lewis, Luke Zettlemoyer.
47. :doc:`MBart-50 <model_doc/mbart>` (from Facebook) released with the paper `Multilingual Translation with Extensible
Multilingual Pretraining and Finetuning <https://arxiv.org/abs/2008.00401>`__ by Yuqing Tang, Chau Tran, Xian Li,
Peng-Jen Chen, Naman Goyal, Vishrav Chaudhary, Jiatao Gu, Angela Fan.
48. :doc:`Megatron-BERT <model_doc/megatron_bert>` (from NVIDIA) released with the paper `Megatron-LM: Training
Multi-Billion Parameter Language Models Using Model Parallelism <https://arxiv.org/abs/1909.08053>`__ by Mohammad
Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper and Bryan Catanzaro.
49. :doc:`Megatron-GPT2 <model_doc/megatron_gpt2>` (from NVIDIA) released with the paper `Megatron-LM: Training
Multi-Billion Parameter Language Models Using Model Parallelism <https://arxiv.org/abs/1909.08053>`__ by Mohammad
Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper and Bryan Catanzaro.
50. :doc:`MPNet <model_doc/mpnet>` (from Microsoft Research) released with the paper `MPNet: Masked and Permuted
Pre-training for Language Understanding <https://arxiv.org/abs/2004.09297>`__ by Kaitao Song, Xu Tan, Tao Qin,
Jianfeng Lu, Tie-Yan Liu.
51. :doc:`MT5 <model_doc/mt5>` (from Google AI) released with the paper `mT5: A massively multilingual pre-trained
text-to-text transformer <https://arxiv.org/abs/2010.11934>`__ by Linting Xue, Noah Constant, Adam Roberts, Mihir
Kale, Rami Al-Rfou, Aditya Siddhant, Aditya Barua, Colin Raffel.
52. :doc:`Pegasus <model_doc/pegasus>` (from Google) released with the paper `PEGASUS: Pre-training with Extracted
Gap-sentences for Abstractive Summarization <https://arxiv.org/abs/1912.08777>`__ by Jingqing Zhang, Yao Zhao,
Mohammad Saleh and Peter J. Liu.
53. :doc:`ProphetNet <model_doc/prophetnet>` (from Microsoft Research) released with the paper `ProphetNet: Predicting
Future N-gram for Sequence-to-Sequence Pre-training <https://arxiv.org/abs/2001.04063>`__ by Yu Yan, Weizhen Qi,
Yeyun Gong, Dayiheng Liu, Nan Duan, Jiusheng Chen, Ruofei Zhang and Ming Zhou.
54. :doc:`Reformer <model_doc/reformer>` (from Google Research) released with the paper `Reformer: The Efficient
Transformer <https://arxiv.org/abs/2001.04451>`__ by Nikita Kitaev, Łukasz Kaiser, Anselm Levskaya.
55. :doc:`RemBERT <model_doc/rembert>` (from Google Research) released with the paper `Rethinking embedding coupling in
pre-trained language models <https://arxiv.org/pdf/2010.12821.pdf>`__ by Hyung Won Chung, Thibault Févry, Henry
Tsai, M. Johnson, Sebastian Ruder.
56. :doc:`RoBERTa <model_doc/roberta>` (from Facebook), released together with the paper a `Robustly Optimized BERT
Pretraining Approach <https://arxiv.org/abs/1907.11692>`__ by Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar
Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke Zettlemoyer, Veselin Stoyanov.
57. :doc:`RoFormer <model_doc/roformer>` (from ZhuiyiTechnology), released together with the paper a `RoFormer:
Enhanced Transformer with Rotary Position Embedding <https://arxiv.org/pdf/2104.09864v1.pdf>`__ by Jianlin Su and
Yu Lu and Shengfeng Pan and Bo Wen and Yunfeng Liu.
58. :doc:`SpeechEncoderDecoder <model_doc/speechencoderdecoder>`
59. :doc:`SpeechToTextTransformer <model_doc/speech_to_text>` (from Facebook), released together with the paper
`fairseq S2T: Fast Speech-to-Text Modeling with fairseq <https://arxiv.org/abs/2010.05171>`__ by Changhan Wang, Yun
Tang, Xutai Ma, Anne Wu, Dmytro Okhonko, Juan Pino.
60. :doc:`SpeechToTextTransformer2 <model_doc/speech_to_text_2>` (from Facebook), released together with the paper
`Large-Scale Self- and Semi-Supervised Learning for Speech Translation <https://arxiv.org/abs/2104.06678>`__ by
Changhan Wang, Anne Wu, Juan Pino, Alexei Baevski, Michael Auli, Alexis Conneau.
61. :doc:`Splinter <model_doc/splinter>` (from Tel Aviv University), released together with the paper `Few-Shot
Question Answering by Pretraining Span Selection <https://arxiv.org/abs/2101.00438>`__ by Ori Ram, Yuval Kirstain,
Jonathan Berant, Amir Globerson, Omer Levy.
62. :doc:`SqueezeBert <model_doc/squeezebert>` (from Berkeley) released with the paper `SqueezeBERT: What can computer
vision teach NLP about efficient neural networks? <https://arxiv.org/abs/2006.11316>`__ by Forrest N. Iandola,
Albert E. Shaw, Ravi Krishna, and Kurt W. Keutzer.
63. :doc:`T5 <model_doc/t5>` (from Google AI) released with the paper `Exploring the Limits of Transfer Learning with a
Unified Text-to-Text Transformer <https://arxiv.org/abs/1910.10683>`__ by Colin Raffel and Noam Shazeer and Adam
Roberts and Katherine Lee and Sharan Narang and Michael Matena and Yanqi Zhou and Wei Li and Peter J. Liu.
64. :doc:`T5v1.1 <model_doc/t5v1.1>` (from Google AI) released in the repository
`google-research/text-to-text-transfer-transformer
<https://github.com/google-research/text-to-text-transfer-transformer/blob/main/released_checkpoints.md#t511>`__ by
Colin Raffel and Noam Shazeer and Adam Roberts and Katherine Lee and Sharan Narang and Michael Matena and Yanqi
Zhou and Wei Li and Peter J. Liu.
65. :doc:`TAPAS <model_doc/tapas>` (from Google AI) released with the paper `TAPAS: Weakly Supervised Table Parsing via
Pre-training <https://arxiv.org/abs/2004.02349>`__ by Jonathan Herzig, Paweł Krzysztof Nowak, Thomas Müller,
Francesco Piccinno and Julian Martin Eisenschlos.
66. :doc:`Transformer-XL <model_doc/transformerxl>` (from Google/CMU) released with the paper `Transformer-XL:
Attentive Language Models Beyond a Fixed-Length Context <https://arxiv.org/abs/1901.02860>`__ by Zihang Dai*,
Zhilin Yang*, Yiming Yang, Jaime Carbonell, Quoc V. Le, Ruslan Salakhutdinov.
67. :doc:`Vision Transformer (ViT) <model_doc/vit>` (from Google AI) released with the paper `An Image is Worth 16x16
Words: Transformers for Image Recognition at Scale <https://arxiv.org/abs/2010.11929>`__ by Alexey Dosovitskiy,
Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias
Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, Neil Houlsby.
68. :doc:`VisualBERT <model_doc/visual_bert>` (from UCLA NLP) released with the paper `VisualBERT: A Simple and
Performant Baseline for Vision and Language <https://arxiv.org/pdf/1908.03557>`__ by Liunian Harold Li, Mark
Yatskar, Da Yin, Cho-Jui Hsieh, Kai-Wei Chang.
69. :doc:`Wav2Vec2 <model_doc/wav2vec2>` (from Facebook AI) released with the paper `wav2vec 2.0: A Framework for
Self-Supervised Learning of Speech Representations <https://arxiv.org/abs/2006.11477>`__ by Alexei Baevski, Henry
Zhou, Abdelrahman Mohamed, Michael Auli.
70. :doc:`XLM <model_doc/xlm>` (from Facebook) released together with the paper `Cross-lingual Language Model
Pretraining <https://arxiv.org/abs/1901.07291>`__ by Guillaume Lample and Alexis Conneau.
71. :doc:`XLM-ProphetNet <model_doc/xlmprophetnet>` (from Microsoft Research) released with the paper `ProphetNet:
Predicting Future N-gram for Sequence-to-Sequence Pre-training <https://arxiv.org/abs/2001.04063>`__ by Yu Yan,
Weizhen Qi, Yeyun Gong, Dayiheng Liu, Nan Duan, Jiusheng Chen, Ruofei Zhang and Ming Zhou.
72. :doc:`XLM-RoBERTa <model_doc/xlmroberta>` (from Facebook AI), released together with the paper `Unsupervised
Cross-lingual Representation Learning at Scale <https://arxiv.org/abs/1911.02116>`__ by Alexis Conneau*, Kartikay
Khandelwal*, Naman Goyal, Vishrav Chaudhary, Guillaume Wenzek, Francisco Guzmán, Edouard Grave, Myle Ott, Luke
Zettlemoyer and Veselin Stoyanov.
73. :doc:`XLNet <model_doc/xlnet>` (from Google/CMU) released with the paper `XLNet: Generalized Autoregressive
Pretraining for Language Understanding <https://arxiv.org/abs/1906.08237>`__ by Zhilin Yang*, Zihang Dai*, Yiming
Yang, Jaime Carbonell, Ruslan Salakhutdinov, Quoc V. Le.
74. :doc:`XLSR-Wav2Vec2 <model_doc/xlsr_wav2vec2>` (from Facebook AI) released with the paper `Unsupervised
Cross-Lingual Representation Learning For Speech Recognition <https://arxiv.org/abs/2006.13979>`__ by Alexis
Conneau, Alexei Baevski, Ronan Collobert, Abdelrahman Mohamed, Michael Auli.
Supported frameworks
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The table below represents the current support in the library for each of those models, whether they have a Python
tokenizer (called "slow"). A "fast" tokenizer backed by the 🤗 Tokenizers library, whether they have support in Jax (via
Flax), PyTorch, and/or TensorFlow.
..
This table is updated automatically from the auto modules with `make fix-copies`. Do not update manually!
.. rst-class:: center-aligned-table
+-----------------------------+----------------+----------------+-----------------+--------------------+--------------+
| Model | Tokenizer slow | Tokenizer fast | PyTorch support | TensorFlow support | Flax Support |
+=============================+================+================+=================+====================+==============+
| ALBERT | ✅ | ✅ | ✅ | ✅ | ✅ |
+-----------------------------+----------------+----------------+-----------------+--------------------+--------------+
| BART | ✅ | ✅ | ✅ | ✅ | ✅ |
+-----------------------------+----------------+----------------+-----------------+--------------------+--------------+
| BeiT | ❌ | ❌ | ✅ | ❌ | ✅ |
+-----------------------------+----------------+----------------+-----------------+--------------------+--------------+
| BERT | ✅ | ✅ | ✅ | ✅ | ✅ |
+-----------------------------+----------------+----------------+-----------------+--------------------+--------------+
| Bert Generation | ✅ | ❌ | ✅ | ❌ | ❌ |
+-----------------------------+----------------+----------------+-----------------+--------------------+--------------+
| BigBird | ✅ | ✅ | ✅ | ❌ | ✅ |
+-----------------------------+----------------+----------------+-----------------+--------------------+--------------+
| BigBirdPegasus | ❌ | ❌ | ✅ | ❌ | ❌ |
+-----------------------------+----------------+----------------+-----------------+--------------------+--------------+
| Blenderbot | ✅ | ❌ | ✅ | ✅ | ❌ |
+-----------------------------+----------------+----------------+-----------------+--------------------+--------------+
| BlenderbotSmall | ✅ | ✅ | ✅ | ✅ | ❌ |
+-----------------------------+----------------+----------------+-----------------+--------------------+--------------+
| CamemBERT | ✅ | ✅ | ✅ | ✅ | ❌ |
+-----------------------------+----------------+----------------+-----------------+--------------------+--------------+
| Canine | ✅ | ❌ | ✅ | ❌ | ❌ |
+-----------------------------+----------------+----------------+-----------------+--------------------+--------------+
| CLIP | ✅ | ✅ | ✅ | ❌ | ✅ |
+-----------------------------+----------------+----------------+-----------------+--------------------+--------------+
| ConvBERT | ✅ | ✅ | ✅ | ✅ | ❌ |
+-----------------------------+----------------+----------------+-----------------+--------------------+--------------+
| CTRL | ✅ | ❌ | ✅ | ✅ | ❌ |
+-----------------------------+----------------+----------------+-----------------+--------------------+--------------+
| DeBERTa | ✅ | ✅ | ✅ | ✅ | ❌ |
+-----------------------------+----------------+----------------+-----------------+--------------------+--------------+
| DeBERTa-v2 | ✅ | ❌ | ✅ | ✅ | ❌ |
+-----------------------------+----------------+----------------+-----------------+--------------------+--------------+
| DeiT | ❌ | ❌ | ✅ | ❌ | ❌ |
+-----------------------------+----------------+----------------+-----------------+--------------------+--------------+
| DETR | ❌ | ❌ | ✅ | ❌ | ❌ |
+-----------------------------+----------------+----------------+-----------------+--------------------+--------------+
| DistilBERT | ✅ | ✅ | ✅ | ✅ | ✅ |
+-----------------------------+----------------+----------------+-----------------+--------------------+--------------+
| DPR | ✅ | ✅ | ✅ | ✅ | ❌ |
+-----------------------------+----------------+----------------+-----------------+--------------------+--------------+
| ELECTRA | ✅ | ✅ | ✅ | ✅ | ✅ |
+-----------------------------+----------------+----------------+-----------------+--------------------+--------------+
| Encoder decoder | ❌ | ❌ | ✅ | ❌ | ✅ |
+-----------------------------+----------------+----------------+-----------------+--------------------+--------------+
| FairSeq Machine-Translation | ✅ | ❌ | ✅ | ❌ | ❌ |
+-----------------------------+----------------+----------------+-----------------+--------------------+--------------+
| FlauBERT | ✅ | ❌ | ✅ | ✅ | ❌ |
+-----------------------------+----------------+----------------+-----------------+--------------------+--------------+
| FNet | ✅ | ✅ | ✅ | ❌ | ❌ |
+-----------------------------+----------------+----------------+-----------------+--------------------+--------------+
| Funnel Transformer | ✅ | ✅ | ✅ | ✅ | ❌ |
+-----------------------------+----------------+----------------+-----------------+--------------------+--------------+
| GPT Neo | ❌ | ❌ | ✅ | ❌ | ✅ |
+-----------------------------+----------------+----------------+-----------------+--------------------+--------------+
| GPT-J | ❌ | ❌ | ✅ | ❌ | ❌ |
+-----------------------------+----------------+----------------+-----------------+--------------------+--------------+
| Hubert | ❌ | ❌ | ✅ | ✅ | ❌ |
+-----------------------------+----------------+----------------+-----------------+--------------------+--------------+
| I-BERT | ❌ | ❌ | ✅ | ❌ | ❌ |
+-----------------------------+----------------+----------------+-----------------+--------------------+--------------+
| LayoutLM | ✅ | ✅ | ✅ | ✅ | ❌ |
+-----------------------------+----------------+----------------+-----------------+--------------------+--------------+
| LayoutLMv2 | ✅ | ✅ | ✅ | ❌ | ❌ |
+-----------------------------+----------------+----------------+-----------------+--------------------+--------------+
| LED | ✅ | ✅ | ✅ | ✅ | ❌ |
+-----------------------------+----------------+----------------+-----------------+--------------------+--------------+
| Longformer | ✅ | ✅ | ✅ | ✅ | ❌ |
+-----------------------------+----------------+----------------+-----------------+--------------------+--------------+
| LUKE | ✅ | ❌ | ✅ | ❌ | ❌ |
+-----------------------------+----------------+----------------+-----------------+--------------------+--------------+
| LXMERT | ✅ | ✅ | ✅ | ✅ | ❌ |
+-----------------------------+----------------+----------------+-----------------+--------------------+--------------+
| M2M100 | ✅ | ❌ | ✅ | ❌ | ❌ |
+-----------------------------+----------------+----------------+-----------------+--------------------+--------------+
| Marian | ✅ | ❌ | ✅ | ✅ | ✅ |
+-----------------------------+----------------+----------------+-----------------+--------------------+--------------+
| mBART | ✅ | ✅ | ✅ | ✅ | ✅ |
+-----------------------------+----------------+----------------+-----------------+--------------------+--------------+
| MegatronBert | ❌ | ❌ | ✅ | ❌ | ❌ |
+-----------------------------+----------------+----------------+-----------------+--------------------+--------------+
| MobileBERT | ✅ | ✅ | ✅ | ✅ | ❌ |
+-----------------------------+----------------+----------------+-----------------+--------------------+--------------+
| MPNet | ✅ | ✅ | ✅ | ✅ | ❌ |
+-----------------------------+----------------+----------------+-----------------+--------------------+--------------+
| mT5 | ✅ | ✅ | ✅ | ✅ | ✅ |
+-----------------------------+----------------+----------------+-----------------+--------------------+--------------+
| OpenAI GPT | ✅ | ✅ | ✅ | ✅ | ❌ |
+-----------------------------+----------------+----------------+-----------------+--------------------+--------------+
| OpenAI GPT-2 | ✅ | ✅ | ✅ | ✅ | ✅ |
+-----------------------------+----------------+----------------+-----------------+--------------------+--------------+
| Pegasus | ✅ | ✅ | ✅ | ✅ | ✅ |
+-----------------------------+----------------+----------------+-----------------+--------------------+--------------+
| ProphetNet | ✅ | ❌ | ✅ | ❌ | ❌ |
+-----------------------------+----------------+----------------+-----------------+--------------------+--------------+
| RAG | ✅ | ❌ | ✅ | ✅ | ❌ |
+-----------------------------+----------------+----------------+-----------------+--------------------+--------------+
| Reformer | ✅ | ✅ | ✅ | ❌ | ❌ |
+-----------------------------+----------------+----------------+-----------------+--------------------+--------------+
| RemBERT | ✅ | ✅ | ✅ | ✅ | ❌ |
+-----------------------------+----------------+----------------+-----------------+--------------------+--------------+
| RetriBERT | ✅ | ✅ | ✅ | ❌ | ❌ |
+-----------------------------+----------------+----------------+-----------------+--------------------+--------------+
| RoBERTa | ✅ | ✅ | ✅ | ✅ | ✅ |
+-----------------------------+----------------+----------------+-----------------+--------------------+--------------+
| RoFormer | ✅ | ✅ | ✅ | ✅ | ❌ |
+-----------------------------+----------------+----------------+-----------------+--------------------+--------------+
| Speech Encoder decoder | ❌ | ❌ | ✅ | ❌ | ❌ |
+-----------------------------+----------------+----------------+-----------------+--------------------+--------------+
| Speech2Text | ✅ | ❌ | ✅ | ❌ | ❌ |
+-----------------------------+----------------+----------------+-----------------+--------------------+--------------+
| Speech2Text2 | ✅ | ❌ | ❌ | ❌ | ❌ |
+-----------------------------+----------------+----------------+-----------------+--------------------+--------------+
| Splinter | ✅ | ✅ | ✅ | ❌ | ❌ |
+-----------------------------+----------------+----------------+-----------------+--------------------+--------------+
| SqueezeBERT | ✅ | ✅ | ✅ | ❌ | ❌ |
+-----------------------------+----------------+----------------+-----------------+--------------------+--------------+
| T5 | ✅ | ✅ | ✅ | ✅ | ✅ |
+-----------------------------+----------------+----------------+-----------------+--------------------+--------------+
| TAPAS | ✅ | ❌ | ✅ | ❌ | ❌ |
+-----------------------------+----------------+----------------+-----------------+--------------------+--------------+
| Transformer-XL | ✅ | ❌ | ✅ | ✅ | ❌ |
+-----------------------------+----------------+----------------+-----------------+--------------------+--------------+
| VisualBert | ❌ | ❌ | ✅ | ❌ | ❌ |
+-----------------------------+----------------+----------------+-----------------+--------------------+--------------+
| ViT | ❌ | ❌ | ✅ | ❌ | ✅ |
+-----------------------------+----------------+----------------+-----------------+--------------------+--------------+
| Wav2Vec2 | ✅ | ❌ | ✅ | ✅ | ✅ |
+-----------------------------+----------------+----------------+-----------------+--------------------+--------------+
| XLM | ✅ | ❌ | ✅ | ✅ | ❌ |
+-----------------------------+----------------+----------------+-----------------+--------------------+--------------+
| XLM-RoBERTa | ✅ | ✅ | ✅ | ✅ | ❌ |
+-----------------------------+----------------+----------------+-----------------+--------------------+--------------+
| XLMProphetNet | ✅ | ❌ | ✅ | ❌ | ❌ |
+-----------------------------+----------------+----------------+-----------------+--------------------+--------------+
| XLNet | ✅ | ✅ | ✅ | ✅ | ❌ |
+-----------------------------+----------------+----------------+-----------------+--------------------+--------------+
.. toctree::
:maxdepth: 2
:caption: Get started
quicktour
installation
philosophy
glossary
.. toctree::
:maxdepth: 2
:caption: Using 🤗 Transformers
task_summary
model_summary
preprocessing
training
model_sharing
tokenizer_summary
multilingual
.. toctree::
:maxdepth: 2
:caption: Advanced guides
pretrained_models
examples
troubleshooting
custom_datasets
notebooks
sagemaker
community
converting_tensorflow_models
migration
contributing
add_new_model
add_new_pipeline
fast_tokenizers
performance
parallelism
testing
debugging
serialization
.. toctree::
:maxdepth: 2
:caption: Research
bertology
perplexity
benchmarks
.. toctree::
:maxdepth: 2
:caption: Main Classes
main_classes/callback
main_classes/configuration
main_classes/data_collator
main_classes/keras_callbacks
main_classes/logging
main_classes/model
main_classes/optimizer_schedules
main_classes/output
main_classes/pipelines
main_classes/processors
main_classes/tokenizer
main_classes/trainer
main_classes/deepspeed
main_classes/feature_extractor
.. toctree::
:maxdepth: 2
:caption: Models
model_doc/albert
model_doc/auto
model_doc/bart
model_doc/barthez
model_doc/beit
model_doc/bert
model_doc/bertweet
model_doc/bertgeneration
model_doc/bert_japanese
model_doc/bigbird
model_doc/bigbird_pegasus
model_doc/blenderbot
model_doc/blenderbot_small
model_doc/bort
model_doc/byt5
model_doc/camembert
model_doc/canine
model_doc/clip
model_doc/convbert
model_doc/cpm
model_doc/ctrl
model_doc/deberta
model_doc/deberta_v2
model_doc/deit
model_doc/detr
model_doc/dialogpt
model_doc/distilbert
model_doc/dpr
model_doc/electra
model_doc/encoderdecoder
model_doc/flaubert
model_doc/fnet
model_doc/fsmt
model_doc/funnel
model_doc/herbert
model_doc/ibert
model_doc/layoutlm
model_doc/layoutlmv2
model_doc/layoutxlm
model_doc/led
model_doc/longformer
model_doc/luke
model_doc/lxmert
model_doc/marian
model_doc/m2m_100
model_doc/mbart
model_doc/megatron_bert
model_doc/megatron_gpt2
model_doc/mobilebert
model_doc/mpnet
model_doc/mt5
model_doc/gpt
model_doc/gpt2
model_doc/gptj
model_doc/gpt_neo
model_doc/hubert
model_doc/pegasus
model_doc/phobert
model_doc/prophetnet
model_doc/rag
model_doc/reformer
model_doc/rembert
model_doc/retribert
model_doc/roberta
model_doc/roformer
model_doc/speechencoderdecoder
model_doc/speech_to_text
model_doc/speech_to_text_2
model_doc/splinter
model_doc/squeezebert
model_doc/t5
model_doc/t5v1.1
model_doc/tapas
model_doc/transformerxl
model_doc/vit
model_doc/visual_bert
model_doc/wav2vec2
model_doc/xlm
model_doc/xlmprophetnet
model_doc/xlmroberta
model_doc/xlnet
model_doc/xlsr_wav2vec2
.. toctree::
:maxdepth: 2
:caption: Internal Helpers
internal/modeling_utils
internal/pipelines_utils
internal/tokenization_utils
internal/trainer_utils
internal/generation_utils
internal/file_utils