transformers/tests/test_pipeline_mixin.py
Yoni Gozlan 203e27059b
Add image text to text pipeline (#34170)
* Standardize image-text-to-text-models-output

add post_process_image_text_to_text to chameleon and cleanup

Fix legacy kwarg behavior and deprecation warning

add post_process_image_text_to_text to qwen2_vl and llava_onevision

Add post_process_image_text_to_text to idefics3, mllama, pixtral processor

* nit var name post_process_image_text_to_text udop

* nit fix deprecation warnings

* Add image-text-to-text pipeline

* add support for image url in chat template for pipeline

* Reformat to be fully compatible with chat templates

* Add tests chat template

* Fix imports and tests

* Add pipeline tag

* change logic handling of single prompt ans multiple images

* add pipeline mapping to models

* fix batched inference

* fix tests

* Add manual batching for preprocessing

* Fix outputs with nested images

* Add support for all common processing kwargs

* Add default padding when multiple text inputs (batch size>1)

* nit change version deprecation warning

* Add support for text only inference

* add chat_template warnings

* Add pipeline tests and add copied from post process function

* Fix batched pipeline tests

* nit

* Fix pipeline tests blip2

* remove unnecessary max_new_tokens

* revert processing kosmos2 and remove unnecessary max_new_tokens

* fix pipeline tests idefics

* Force try loading processor if pipeline supports it

* revert load_processor change

* hardcode loading only processor

* remove unnecessary try except

* skip imagetexttotext tests for kosmos2 as tiny model causes problems

* Make code clearer

* Address review comments

* remove preprocessing logic from pipeline

* fix fuyu

* add BC resize fuyu

* Move post_process_image_text_to_text to ProcessorMixin

* add guard in post_process

* fix zero shot object detection pipeline

* add support for generator input in pipeline

* nit

* change default image-text-to-text model to llava onevision

* fix owlv2 size dict

* Change legacy deprecation warning to only show when True
2024-10-31 15:48:11 -04:00

969 lines
40 KiB
Python

# coding=utf-8
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import copy
import inspect
import json
import os
import random
import re
import unittest
from dataclasses import fields, is_dataclass
from pathlib import Path
from textwrap import dedent
from typing import get_args
from huggingface_hub import (
AudioClassificationInput,
AutomaticSpeechRecognitionInput,
DepthEstimationInput,
ImageClassificationInput,
ImageSegmentationInput,
ImageToTextInput,
ObjectDetectionInput,
QuestionAnsweringInput,
VideoClassificationInput,
ZeroShotImageClassificationInput,
)
from transformers.models.auto.processing_auto import PROCESSOR_MAPPING_NAMES
from transformers.pipelines import (
AudioClassificationPipeline,
AutomaticSpeechRecognitionPipeline,
DepthEstimationPipeline,
ImageClassificationPipeline,
ImageSegmentationPipeline,
ImageToTextPipeline,
ObjectDetectionPipeline,
QuestionAnsweringPipeline,
VideoClassificationPipeline,
ZeroShotImageClassificationPipeline,
)
from transformers.testing_utils import (
is_pipeline_test,
require_av,
require_pytesseract,
require_timm,
require_torch,
require_torch_or_tf,
require_vision,
)
from transformers.utils import direct_transformers_import, logging
from .pipelines.test_pipelines_audio_classification import AudioClassificationPipelineTests
from .pipelines.test_pipelines_automatic_speech_recognition import AutomaticSpeechRecognitionPipelineTests
from .pipelines.test_pipelines_depth_estimation import DepthEstimationPipelineTests
from .pipelines.test_pipelines_document_question_answering import DocumentQuestionAnsweringPipelineTests
from .pipelines.test_pipelines_feature_extraction import FeatureExtractionPipelineTests
from .pipelines.test_pipelines_fill_mask import FillMaskPipelineTests
from .pipelines.test_pipelines_image_classification import ImageClassificationPipelineTests
from .pipelines.test_pipelines_image_feature_extraction import ImageFeatureExtractionPipelineTests
from .pipelines.test_pipelines_image_segmentation import ImageSegmentationPipelineTests
from .pipelines.test_pipelines_image_text_to_text import ImageTextToTextPipelineTests
from .pipelines.test_pipelines_image_to_image import ImageToImagePipelineTests
from .pipelines.test_pipelines_image_to_text import ImageToTextPipelineTests
from .pipelines.test_pipelines_mask_generation import MaskGenerationPipelineTests
from .pipelines.test_pipelines_object_detection import ObjectDetectionPipelineTests
from .pipelines.test_pipelines_question_answering import QAPipelineTests
from .pipelines.test_pipelines_summarization import SummarizationPipelineTests
from .pipelines.test_pipelines_table_question_answering import TQAPipelineTests
from .pipelines.test_pipelines_text2text_generation import Text2TextGenerationPipelineTests
from .pipelines.test_pipelines_text_classification import TextClassificationPipelineTests
from .pipelines.test_pipelines_text_generation import TextGenerationPipelineTests
from .pipelines.test_pipelines_text_to_audio import TextToAudioPipelineTests
from .pipelines.test_pipelines_token_classification import TokenClassificationPipelineTests
from .pipelines.test_pipelines_translation import TranslationPipelineTests
from .pipelines.test_pipelines_video_classification import VideoClassificationPipelineTests
from .pipelines.test_pipelines_visual_question_answering import VisualQuestionAnsweringPipelineTests
from .pipelines.test_pipelines_zero_shot import ZeroShotClassificationPipelineTests
from .pipelines.test_pipelines_zero_shot_audio_classification import ZeroShotAudioClassificationPipelineTests
from .pipelines.test_pipelines_zero_shot_image_classification import ZeroShotImageClassificationPipelineTests
from .pipelines.test_pipelines_zero_shot_object_detection import ZeroShotObjectDetectionPipelineTests
pipeline_test_mapping = {
"audio-classification": {"test": AudioClassificationPipelineTests},
"automatic-speech-recognition": {"test": AutomaticSpeechRecognitionPipelineTests},
"depth-estimation": {"test": DepthEstimationPipelineTests},
"document-question-answering": {"test": DocumentQuestionAnsweringPipelineTests},
"feature-extraction": {"test": FeatureExtractionPipelineTests},
"fill-mask": {"test": FillMaskPipelineTests},
"image-classification": {"test": ImageClassificationPipelineTests},
"image-feature-extraction": {"test": ImageFeatureExtractionPipelineTests},
"image-segmentation": {"test": ImageSegmentationPipelineTests},
"image-text-to-text": {"test": ImageTextToTextPipelineTests},
"image-to-image": {"test": ImageToImagePipelineTests},
"image-to-text": {"test": ImageToTextPipelineTests},
"mask-generation": {"test": MaskGenerationPipelineTests},
"object-detection": {"test": ObjectDetectionPipelineTests},
"question-answering": {"test": QAPipelineTests},
"summarization": {"test": SummarizationPipelineTests},
"table-question-answering": {"test": TQAPipelineTests},
"text2text-generation": {"test": Text2TextGenerationPipelineTests},
"text-classification": {"test": TextClassificationPipelineTests},
"text-generation": {"test": TextGenerationPipelineTests},
"text-to-audio": {"test": TextToAudioPipelineTests},
"token-classification": {"test": TokenClassificationPipelineTests},
"translation": {"test": TranslationPipelineTests},
"video-classification": {"test": VideoClassificationPipelineTests},
"visual-question-answering": {"test": VisualQuestionAnsweringPipelineTests},
"zero-shot": {"test": ZeroShotClassificationPipelineTests},
"zero-shot-audio-classification": {"test": ZeroShotAudioClassificationPipelineTests},
"zero-shot-image-classification": {"test": ZeroShotImageClassificationPipelineTests},
"zero-shot-object-detection": {"test": ZeroShotObjectDetectionPipelineTests},
}
task_to_pipeline_and_spec_mapping = {
# Adding a task to this list will cause its pipeline input signature to be checked against the corresponding
# task spec in the HF Hub
"audio-classification": (AudioClassificationPipeline, AudioClassificationInput),
"automatic-speech-recognition": (AutomaticSpeechRecognitionPipeline, AutomaticSpeechRecognitionInput),
"depth-estimation": (DepthEstimationPipeline, DepthEstimationInput),
"image-classification": (ImageClassificationPipeline, ImageClassificationInput),
"image-segmentation": (ImageSegmentationPipeline, ImageSegmentationInput),
"image-to-text": (ImageToTextPipeline, ImageToTextInput),
"object-detection": (ObjectDetectionPipeline, ObjectDetectionInput),
"question-answering": (QuestionAnsweringPipeline, QuestionAnsweringInput),
"video-classification": (VideoClassificationPipeline, VideoClassificationInput),
"zero-shot-image-classification": (ZeroShotImageClassificationPipeline, ZeroShotImageClassificationInput),
}
for task, task_info in pipeline_test_mapping.items():
test = task_info["test"]
task_info["mapping"] = {
"pt": getattr(test, "model_mapping", None),
"tf": getattr(test, "tf_model_mapping", None),
}
# The default value `hf-internal-testing` is for running the pipeline testing against the tiny models on the Hub.
# For debugging purpose, we can specify a local path which is the `output_path` argument of a previous run of
# `utils/create_dummy_models.py`.
TRANSFORMERS_TINY_MODEL_PATH = os.environ.get("TRANSFORMERS_TINY_MODEL_PATH", "hf-internal-testing")
if TRANSFORMERS_TINY_MODEL_PATH == "hf-internal-testing":
TINY_MODEL_SUMMARY_FILE_PATH = os.path.join(Path(__file__).parent.parent, "tests/utils/tiny_model_summary.json")
else:
TINY_MODEL_SUMMARY_FILE_PATH = os.path.join(TRANSFORMERS_TINY_MODEL_PATH, "reports", "tiny_model_summary.json")
with open(TINY_MODEL_SUMMARY_FILE_PATH) as fp:
tiny_model_summary = json.load(fp)
PATH_TO_TRANSFORMERS = os.path.join(Path(__file__).parent.parent, "src/transformers")
# Dynamically import the Transformers module to grab the attribute classes of the processor form their names.
transformers_module = direct_transformers_import(PATH_TO_TRANSFORMERS)
logger = logging.get_logger(__name__)
class PipelineTesterMixin:
model_tester = None
pipeline_model_mapping = None
supported_frameworks = ["pt", "tf"]
def run_task_tests(self, task, torch_dtype="float32"):
"""Run pipeline tests for a specific `task`
Args:
task (`str`):
A task name. This should be a key in the mapping `pipeline_test_mapping`.
torch_dtype (`str`, `optional`, defaults to `'float32'`):
The torch dtype to use for the model. Can be used for FP16/other precision inference.
"""
if task not in self.pipeline_model_mapping:
self.skipTest(
f"{self.__class__.__name__}::test_pipeline_{task.replace('-', '_')}_{torch_dtype} is skipped: `{task}` is not in "
f"`self.pipeline_model_mapping` for `{self.__class__.__name__}`."
)
model_architectures = self.pipeline_model_mapping[task]
if not isinstance(model_architectures, tuple):
model_architectures = (model_architectures,)
# We are going to run tests for multiple model architectures, some of them might be skipped
# with this flag we are control if at least one model were tested or all were skipped
at_least_one_model_is_tested = False
for model_architecture in model_architectures:
model_arch_name = model_architecture.__name__
model_type = model_architecture.config_class.model_type
# Get the canonical name
for _prefix in ["Flax", "TF"]:
if model_arch_name.startswith(_prefix):
model_arch_name = model_arch_name[len(_prefix) :]
break
if model_arch_name not in tiny_model_summary:
continue
tokenizer_names = tiny_model_summary[model_arch_name]["tokenizer_classes"]
# Sort image processors and feature extractors from tiny-models json file
image_processor_names = []
feature_extractor_names = []
processor_classes = tiny_model_summary[model_arch_name]["processor_classes"]
for cls_name in processor_classes:
if "ImageProcessor" in cls_name:
image_processor_names.append(cls_name)
elif "FeatureExtractor" in cls_name:
feature_extractor_names.append(cls_name)
# Processor classes are not in tiny models JSON file, so extract them from the mapping
# processors are mapped to instance, e.g. "XxxProcessor"
processor_names = PROCESSOR_MAPPING_NAMES.get(model_type, None)
if not isinstance(processor_names, (list, tuple)):
processor_names = [processor_names]
commit = None
if model_arch_name in tiny_model_summary and "sha" in tiny_model_summary[model_arch_name]:
commit = tiny_model_summary[model_arch_name]["sha"]
repo_name = f"tiny-random-{model_arch_name}"
if TRANSFORMERS_TINY_MODEL_PATH != "hf-internal-testing":
repo_name = model_arch_name
self.run_model_pipeline_tests(
task,
repo_name,
model_architecture,
tokenizer_names=tokenizer_names,
image_processor_names=image_processor_names,
feature_extractor_names=feature_extractor_names,
processor_names=processor_names,
commit=commit,
torch_dtype=torch_dtype,
)
at_least_one_model_is_tested = True
if task in task_to_pipeline_and_spec_mapping:
pipeline, hub_spec = task_to_pipeline_and_spec_mapping[task]
compare_pipeline_args_to_hub_spec(pipeline, hub_spec)
if not at_least_one_model_is_tested:
self.skipTest(
f"{self.__class__.__name__}::test_pipeline_{task.replace('-', '_')}_{torch_dtype} is skipped: Could not find any "
f"model architecture in the tiny models JSON file for `{task}`."
)
def run_model_pipeline_tests(
self,
task,
repo_name,
model_architecture,
tokenizer_names,
image_processor_names,
feature_extractor_names,
processor_names,
commit,
torch_dtype="float32",
):
"""Run pipeline tests for a specific `task` with the give model class and tokenizer/processor class names
Args:
task (`str`):
A task name. This should be a key in the mapping `pipeline_test_mapping`.
repo_name (`str`):
A model repository id on the Hub.
model_architecture (`type`):
A subclass of `PretrainedModel` or `PretrainedModel`.
tokenizer_names (`List[str]`):
A list of names of a subclasses of `PreTrainedTokenizerFast` or `PreTrainedTokenizer`.
image_processor_names (`List[str]`):
A list of names of subclasses of `BaseImageProcessor`.
feature_extractor_names (`List[str]`):
A list of names of subclasses of `FeatureExtractionMixin`.
processor_names (`List[str]`):
A list of names of subclasses of `ProcessorMixin`.
commit (`str`):
The commit hash of the model repository on the Hub.
torch_dtype (`str`, `optional`, defaults to `'float32'`):
The torch dtype to use for the model. Can be used for FP16/other precision inference.
"""
# Get an instance of the corresponding class `XXXPipelineTests` in order to use `get_test_pipeline` and
# `run_pipeline_test`.
pipeline_test_class_name = pipeline_test_mapping[task]["test"].__name__
# If no image processor or feature extractor is found, we still need to test the pipeline with None
# otherwise for any empty list we might skip all the tests
tokenizer_names = tokenizer_names or [None]
image_processor_names = image_processor_names or [None]
feature_extractor_names = feature_extractor_names or [None]
processor_names = processor_names or [None]
test_cases = [
{
"tokenizer_name": tokenizer_name,
"image_processor_name": image_processor_name,
"feature_extractor_name": feature_extractor_name,
"processor_name": processor_name,
}
for tokenizer_name in tokenizer_names
for image_processor_name in image_processor_names
for feature_extractor_name in feature_extractor_names
for processor_name in processor_names
]
for test_case in test_cases:
tokenizer_name = test_case["tokenizer_name"]
image_processor_name = test_case["image_processor_name"]
feature_extractor_name = test_case["feature_extractor_name"]
processor_name = test_case["processor_name"]
do_skip_test_case = self.is_pipeline_test_to_skip(
pipeline_test_class_name,
model_architecture.config_class,
model_architecture,
tokenizer_name,
image_processor_name,
feature_extractor_name,
processor_name,
)
if do_skip_test_case:
logger.warning(
f"{self.__class__.__name__}::test_pipeline_{task.replace('-', '_')}_{torch_dtype} is skipped: test is "
f"currently known to fail for: model `{model_architecture.__name__}` | tokenizer "
f"`{tokenizer_name}` | image processor `{image_processor_name}` | feature extractor {feature_extractor_name}."
)
continue
self.run_pipeline_test(
task,
repo_name,
model_architecture,
tokenizer_name=tokenizer_name,
image_processor_name=image_processor_name,
feature_extractor_name=feature_extractor_name,
processor_name=processor_name,
commit=commit,
torch_dtype=torch_dtype,
)
def run_pipeline_test(
self,
task,
repo_name,
model_architecture,
tokenizer_name,
image_processor_name,
feature_extractor_name,
processor_name,
commit,
torch_dtype="float32",
):
"""Run pipeline tests for a specific `task` with the give model class and tokenizer/processor class name
The model will be loaded from a model repository on the Hub.
Args:
task (`str`):
A task name. This should be a key in the mapping `pipeline_test_mapping`.
repo_name (`str`):
A model repository id on the Hub.
model_architecture (`type`):
A subclass of `PretrainedModel` or `PretrainedModel`.
tokenizer_name (`str`):
The name of a subclass of `PreTrainedTokenizerFast` or `PreTrainedTokenizer`.
image_processor_name (`str`):
The name of a subclass of `BaseImageProcessor`.
feature_extractor_name (`str`):
The name of a subclass of `FeatureExtractionMixin`.
processor_name (`str`):
The name of a subclass of `ProcessorMixin`.
commit (`str`):
The commit hash of the model repository on the Hub.
torch_dtype (`str`, `optional`, defaults to `'float32'`):
The torch dtype to use for the model. Can be used for FP16/other precision inference.
"""
repo_id = f"{TRANSFORMERS_TINY_MODEL_PATH}/{repo_name}"
model_type = model_architecture.config_class.model_type
if TRANSFORMERS_TINY_MODEL_PATH != "hf-internal-testing":
repo_id = os.path.join(TRANSFORMERS_TINY_MODEL_PATH, model_type, repo_name)
# -------------------- Load model --------------------
# TODO: We should check if a model file is on the Hub repo. instead.
try:
model = model_architecture.from_pretrained(repo_id, revision=commit)
except Exception:
logger.warning(
f"{self.__class__.__name__}::test_pipeline_{task.replace('-', '_')}_{torch_dtype} is skipped: Could not find or load "
f"the model from `{repo_id}` with `{model_architecture}`."
)
self.skipTest(f"Could not find or load the model from {repo_id} with {model_architecture}.")
# -------------------- Load tokenizer --------------------
tokenizer = None
if tokenizer_name is not None:
tokenizer_class = getattr(transformers_module, tokenizer_name)
tokenizer = tokenizer_class.from_pretrained(repo_id, revision=commit)
# -------------------- Load processors --------------------
processors = {}
for key, name in zip(
["image_processor", "feature_extractor", "processor"],
[image_processor_name, feature_extractor_name, processor_name],
):
if name is not None:
try:
# Can fail if some extra dependencies are not installed
processor_class = getattr(transformers_module, name)
processor = processor_class.from_pretrained(repo_id, revision=commit)
processors[key] = processor
except Exception:
logger.warning(
f"{self.__class__.__name__}::test_pipeline_{task.replace('-', '_')}_{torch_dtype} is skipped: "
f"Could not load the {key} from `{repo_id}` with `{name}`."
)
self.skipTest(f"Could not load the {key} from {repo_id} with {name}.")
# ---------------------------------------------------------
# TODO: Maybe not upload such problematic tiny models to Hub.
if tokenizer is None and "image_processor" not in processors and "feature_extractor" not in processors:
logger.warning(
f"{self.__class__.__name__}::test_pipeline_{task.replace('-', '_')}_{torch_dtype} is skipped: Could not find or load "
f"any tokenizer / image processor / feature extractor from `{repo_id}`."
)
self.skipTest(f"Could not find or load any tokenizer / processor from {repo_id}.")
pipeline_test_class_name = pipeline_test_mapping[task]["test"].__name__
if self.is_pipeline_test_to_skip_more(pipeline_test_class_name, model.config, model, tokenizer, **processors):
logger.warning(
f"{self.__class__.__name__}::test_pipeline_{task.replace('-', '_')}_{torch_dtype} is skipped: test is "
f"currently known to fail for: model `{model_architecture.__name__}` | tokenizer "
f"`{tokenizer_name}` | image processor `{image_processor_name}` | feature extractor `{feature_extractor_name}`."
)
self.skipTest(
f"Test is known to fail for: model `{model_architecture.__name__}` | tokenizer `{tokenizer_name}` "
f"| image processor `{image_processor_name}` | feature extractor `{feature_extractor_name}`."
)
# validate
validate_test_components(model, tokenizer)
if hasattr(model, "eval"):
model = model.eval()
# Get an instance of the corresponding class `XXXPipelineTests` in order to use `get_test_pipeline` and
# `run_pipeline_test`.
task_test = pipeline_test_mapping[task]["test"]()
pipeline, examples = task_test.get_test_pipeline(model, tokenizer, **processors, torch_dtype=torch_dtype)
if pipeline is None:
# The test can disable itself, but it should be very marginal
# Concerns: Wav2Vec2ForCTC without tokenizer test (FastTokenizer don't exist)
logger.warning(
f"{self.__class__.__name__}::test_pipeline_{task.replace('-', '_')}_{torch_dtype} is skipped: Could not get the "
"pipeline for testing."
)
self.skipTest(reason="Could not get the pipeline for testing.")
task_test.run_pipeline_test(pipeline, examples)
def run_batch_test(pipeline, examples):
# Need to copy because `Conversation` are stateful
if pipeline.tokenizer is not None and pipeline.tokenizer.pad_token_id is None:
return # No batching for this and it's OK
# 10 examples with batch size 4 means there needs to be a unfinished batch
# which is important for the unbatcher
def data(n):
for _ in range(n):
# Need to copy because Conversation object is mutated
yield copy.deepcopy(random.choice(examples))
out = []
for item in pipeline(data(10), batch_size=4):
out.append(item)
self.assertEqual(len(out), 10)
run_batch_test(pipeline, examples)
@is_pipeline_test
def test_pipeline_audio_classification(self):
self.run_task_tests(task="audio-classification")
@is_pipeline_test
@require_torch
def test_pipeline_audio_classification_fp16(self):
self.run_task_tests(task="audio-classification", torch_dtype="float16")
@is_pipeline_test
def test_pipeline_automatic_speech_recognition(self):
self.run_task_tests(task="automatic-speech-recognition")
@is_pipeline_test
@require_torch
def test_pipeline_automatic_speech_recognition_fp16(self):
self.run_task_tests(task="automatic-speech-recognition", torch_dtype="float16")
@is_pipeline_test
@require_vision
@require_timm
@require_torch
def test_pipeline_depth_estimation(self):
self.run_task_tests(task="depth-estimation")
@is_pipeline_test
@require_vision
@require_timm
@require_torch
def test_pipeline_depth_estimation_fp16(self):
self.run_task_tests(task="depth-estimation", torch_dtype="float16")
@is_pipeline_test
@require_pytesseract
@require_torch
@require_vision
def test_pipeline_document_question_answering(self):
self.run_task_tests(task="document-question-answering")
@is_pipeline_test
@require_pytesseract
@require_torch
@require_vision
def test_pipeline_document_question_answering_fp16(self):
self.run_task_tests(task="document-question-answering", torch_dtype="float16")
@is_pipeline_test
def test_pipeline_feature_extraction(self):
self.run_task_tests(task="feature-extraction")
@is_pipeline_test
@require_torch
def test_pipeline_feature_extraction_fp16(self):
self.run_task_tests(task="feature-extraction", torch_dtype="float16")
@is_pipeline_test
def test_pipeline_fill_mask(self):
self.run_task_tests(task="fill-mask")
@is_pipeline_test
@require_torch
def test_pipeline_fill_mask_fp16(self):
self.run_task_tests(task="fill-mask", torch_dtype="float16")
@is_pipeline_test
@require_torch_or_tf
@require_vision
def test_pipeline_image_classification(self):
self.run_task_tests(task="image-classification")
@is_pipeline_test
@require_vision
@require_torch
def test_pipeline_image_classification_fp16(self):
self.run_task_tests(task="image-classification", torch_dtype="float16")
@is_pipeline_test
@require_vision
@require_timm
@require_torch
def test_pipeline_image_segmentation(self):
self.run_task_tests(task="image-segmentation")
@is_pipeline_test
@require_vision
@require_timm
@require_torch
def test_pipeline_image_segmentation_fp16(self):
self.run_task_tests(task="image-segmentation", torch_dtype="float16")
@is_pipeline_test
@require_vision
@require_torch
def test_pipeline_image_text_to_text(self):
self.run_task_tests(task="image-text-to-text")
@is_pipeline_test
@require_vision
@require_torch
def test_pipeline_image_text_to_text_fp16(self):
self.run_task_tests(task="image-text-to-text", torch_dtype="float16")
@is_pipeline_test
@require_vision
def test_pipeline_image_to_text(self):
self.run_task_tests(task="image-to-text")
@is_pipeline_test
@require_vision
@require_torch
def test_pipeline_image_to_text_fp16(self):
self.run_task_tests(task="image-to-text", torch_dtype="float16")
@is_pipeline_test
@require_timm
@require_vision
@require_torch
def test_pipeline_image_feature_extraction(self):
self.run_task_tests(task="image-feature-extraction")
@is_pipeline_test
@require_timm
@require_vision
@require_torch
def test_pipeline_image_feature_extraction_fp16(self):
self.run_task_tests(task="image-feature-extraction", torch_dtype="float16")
@unittest.skip(reason="`run_pipeline_test` is currently not implemented.")
@is_pipeline_test
@require_vision
@require_torch
def test_pipeline_mask_generation(self):
self.run_task_tests(task="mask-generation")
@unittest.skip(reason="`run_pipeline_test` is currently not implemented.")
@is_pipeline_test
@require_vision
@require_torch
def test_pipeline_mask_generation_fp16(self):
self.run_task_tests(task="mask-generation", torch_dtype="float16")
@is_pipeline_test
@require_vision
@require_timm
@require_torch
def test_pipeline_object_detection(self):
self.run_task_tests(task="object-detection")
@is_pipeline_test
@require_vision
@require_timm
@require_torch
def test_pipeline_object_detection_fp16(self):
self.run_task_tests(task="object-detection", torch_dtype="float16")
@is_pipeline_test
def test_pipeline_question_answering(self):
self.run_task_tests(task="question-answering")
@is_pipeline_test
@require_torch
def test_pipeline_question_answering_fp16(self):
self.run_task_tests(task="question-answering", torch_dtype="float16")
@is_pipeline_test
def test_pipeline_summarization(self):
self.run_task_tests(task="summarization")
@is_pipeline_test
@require_torch
def test_pipeline_summarization_fp16(self):
self.run_task_tests(task="summarization", torch_dtype="float16")
@is_pipeline_test
def test_pipeline_table_question_answering(self):
self.run_task_tests(task="table-question-answering")
@is_pipeline_test
@require_torch
def test_pipeline_table_question_answering_fp16(self):
self.run_task_tests(task="table-question-answering", torch_dtype="float16")
@is_pipeline_test
def test_pipeline_text2text_generation(self):
self.run_task_tests(task="text2text-generation")
@is_pipeline_test
@require_torch
def test_pipeline_text2text_generation_fp16(self):
self.run_task_tests(task="text2text-generation", torch_dtype="float16")
@is_pipeline_test
def test_pipeline_text_classification(self):
self.run_task_tests(task="text-classification")
@is_pipeline_test
@require_torch
def test_pipeline_text_classification_fp16(self):
self.run_task_tests(task="text-classification", torch_dtype="float16")
@is_pipeline_test
@require_torch_or_tf
def test_pipeline_text_generation(self):
self.run_task_tests(task="text-generation")
@is_pipeline_test
@require_torch
def test_pipeline_text_generation_fp16(self):
self.run_task_tests(task="text-generation", torch_dtype="float16")
@is_pipeline_test
@require_torch
def test_pipeline_text_to_audio(self):
self.run_task_tests(task="text-to-audio")
@is_pipeline_test
@require_torch
def test_pipeline_text_to_audio_fp16(self):
self.run_task_tests(task="text-to-audio", torch_dtype="float16")
@is_pipeline_test
def test_pipeline_token_classification(self):
self.run_task_tests(task="token-classification")
@is_pipeline_test
@require_torch
def test_pipeline_token_classification_fp16(self):
self.run_task_tests(task="token-classification", torch_dtype="float16")
@is_pipeline_test
def test_pipeline_translation(self):
self.run_task_tests(task="translation")
@is_pipeline_test
@require_torch
def test_pipeline_translation_fp16(self):
self.run_task_tests(task="translation", torch_dtype="float16")
@is_pipeline_test
@require_torch_or_tf
@require_vision
@require_av
def test_pipeline_video_classification(self):
self.run_task_tests(task="video-classification")
@is_pipeline_test
@require_vision
@require_torch
@require_av
def test_pipeline_video_classification_fp16(self):
self.run_task_tests(task="video-classification", torch_dtype="float16")
@is_pipeline_test
@require_torch
@require_vision
def test_pipeline_visual_question_answering(self):
self.run_task_tests(task="visual-question-answering")
@is_pipeline_test
@require_torch
@require_vision
def test_pipeline_visual_question_answering_fp16(self):
self.run_task_tests(task="visual-question-answering", torch_dtype="float16")
@is_pipeline_test
def test_pipeline_zero_shot(self):
self.run_task_tests(task="zero-shot")
@is_pipeline_test
@require_torch
def test_pipeline_zero_shot_fp16(self):
self.run_task_tests(task="zero-shot", torch_dtype="float16")
@is_pipeline_test
@require_torch
def test_pipeline_zero_shot_audio_classification(self):
self.run_task_tests(task="zero-shot-audio-classification")
@is_pipeline_test
@require_torch
def test_pipeline_zero_shot_audio_classification_fp16(self):
self.run_task_tests(task="zero-shot-audio-classification", torch_dtype="float16")
@is_pipeline_test
@require_vision
def test_pipeline_zero_shot_image_classification(self):
self.run_task_tests(task="zero-shot-image-classification")
@is_pipeline_test
@require_vision
@require_torch
def test_pipeline_zero_shot_image_classification_fp16(self):
self.run_task_tests(task="zero-shot-image-classification", torch_dtype="float16")
@is_pipeline_test
@require_vision
@require_torch
def test_pipeline_zero_shot_object_detection(self):
self.run_task_tests(task="zero-shot-object-detection")
@is_pipeline_test
@require_vision
@require_torch
def test_pipeline_zero_shot_object_detection_fp16(self):
self.run_task_tests(task="zero-shot-object-detection", torch_dtype="float16")
# This contains the test cases to be skipped without model architecture being involved.
def is_pipeline_test_to_skip(
self,
pipeline_test_case_name,
config_class,
model_architecture,
tokenizer_name,
image_processor_name,
feature_extractor_name,
processor_name,
):
"""Skip some tests based on the classes or their names without the instantiated objects.
This is to avoid calling `from_pretrained` (so reducing the runtime) if we already know the tests will fail.
"""
# No fix is required for this case.
if (
pipeline_test_case_name == "DocumentQuestionAnsweringPipelineTests"
and tokenizer_name is not None
and not tokenizer_name.endswith("Fast")
):
# `DocumentQuestionAnsweringPipelineTests` requires a fast tokenizer.
return True
return False
def is_pipeline_test_to_skip_more(
self,
pipeline_test_case_name,
config,
model,
tokenizer,
image_processor=None,
feature_extractor=None,
processor=None,
): # noqa
"""Skip some more tests based on the information from the instantiated objects."""
# No fix is required for this case.
if (
pipeline_test_case_name == "QAPipelineTests"
and tokenizer is not None
and getattr(tokenizer, "pad_token", None) is None
and not tokenizer.__class__.__name__.endswith("Fast")
):
# `QAPipelineTests` doesn't work with a slow tokenizer that has no pad token.
return True
return False
def validate_test_components(model, tokenizer):
# TODO: Move this to tiny model creation script
# head-specific (within a model type) necessary changes to the config
# 1. for `BlenderbotForCausalLM`
if model.__class__.__name__ == "BlenderbotForCausalLM":
model.config.encoder_no_repeat_ngram_size = 0
# TODO: Change the tiny model creation script: don't create models with problematic tokenizers
# Avoid `IndexError` in embedding layers
CONFIG_WITHOUT_VOCAB_SIZE = ["CanineConfig"]
if tokenizer is not None:
# Removing `decoder=True` in `get_text_config` can lead to conflicting values e.g. in MusicGen
config_vocab_size = getattr(model.config.get_text_config(decoder=True), "vocab_size", None)
# For CLIP-like models
if config_vocab_size is None:
if hasattr(model.config, "text_encoder"):
config_vocab_size = getattr(model.config.text_config, "vocab_size", None)
if config_vocab_size is None and model.config.__class__.__name__ not in CONFIG_WITHOUT_VOCAB_SIZE:
raise ValueError(
"Could not determine `vocab_size` from model configuration while `tokenizer` is not `None`."
)
def get_arg_names_from_hub_spec(hub_spec, first_level=True):
# This util is used in pipeline tests, to verify that a pipeline's documented arguments
# match the Hub specification for that task
arg_names = []
for field in fields(hub_spec):
# Recurse into nested fields, but max one level
if is_dataclass(field.type):
arg_names.extend([field.name for field in fields(field.type)])
continue
# Next, catch nested fields that are part of a Union[], which is usually caused by Optional[]
for param_type in get_args(field.type):
if is_dataclass(param_type):
# Again, recurse into nested fields, but max one level
arg_names.extend([field.name for field in fields(param_type)])
break
else:
# Finally, this line triggers if it's not a nested field
arg_names.append(field.name)
return arg_names
def parse_args_from_docstring_by_indentation(docstring):
# This util is used in pipeline tests, to extract the argument names from a google-format docstring
# to compare them against the Hub specification for that task. It uses indentation levels as a primary
# source of truth, so these have to be correct!
docstring = dedent(docstring)
lines_by_indent = [
(len(line) - len(line.lstrip()), line.strip()) for line in docstring.split("\n") if line.strip()
]
args_lineno = None
args_indent = None
args_end = None
for lineno, (indent, line) in enumerate(lines_by_indent):
if line == "Args:":
args_lineno = lineno
args_indent = indent
continue
elif args_lineno is not None and indent == args_indent:
args_end = lineno
break
if args_lineno is None:
raise ValueError("No args block to parse!")
elif args_end is None:
args_block = lines_by_indent[args_lineno + 1 :]
else:
args_block = lines_by_indent[args_lineno + 1 : args_end]
outer_indent_level = min(line[0] for line in args_block)
outer_lines = [line for line in args_block if line[0] == outer_indent_level]
arg_names = [re.match(r"(\w+)\W", line[1]).group(1) for line in outer_lines]
return arg_names
def compare_pipeline_args_to_hub_spec(pipeline_class, hub_spec):
ALLOWED_TRANSFORMERS_ONLY_ARGS = ["timeout"]
docstring = inspect.getdoc(pipeline_class.__call__).strip()
docstring_args = set(parse_args_from_docstring_by_indentation(docstring))
hub_args = set(get_arg_names_from_hub_spec(hub_spec))
# Special casing: We allow the name of this arg to differ
js_generate_args = [js_arg for js_arg in hub_args if js_arg.startswith("generate")]
docstring_generate_args = [
docstring_arg for docstring_arg in docstring_args if docstring_arg.startswith("generate")
]
if (
len(js_generate_args) == 1
and len(docstring_generate_args) == 1
and js_generate_args != docstring_generate_args
):
hub_args.remove(js_generate_args[0])
docstring_args.remove(docstring_generate_args[0])
# Special casing 2: We permit some transformers-only arguments that don't affect pipeline output
for arg in ALLOWED_TRANSFORMERS_ONLY_ARGS:
if arg in docstring_args and arg not in hub_args:
docstring_args.remove(arg)
if hub_args != docstring_args:
error = [f"{pipeline_class.__name__} differs from JS spec {hub_spec.__name__}"]
matching_args = hub_args & docstring_args
huggingface_hub_only = hub_args - docstring_args
transformers_only = docstring_args - hub_args
if matching_args:
error.append(f"Matching args: {matching_args}")
if huggingface_hub_only:
error.append(f"Huggingface Hub only: {huggingface_hub_only}")
if transformers_only:
error.append(f"Transformers only: {transformers_only}")
raise ValueError("\n".join(error))