mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-04 13:20:12 +06:00

* Pass datasets trust_remote_code * Pass trust_remote_code in more tests * Add trust_remote_dataset_code arg to some tests * Revert "Temporarily pin datasets upper version to fix CI" This reverts commitb7672826ca
. * Pass trust_remote_code in librispeech_asr_dummy docstrings * Revert "Pin datasets<2.20.0 for examples" This reverts commit833fc17a3e
. * Pass trust_remote_code to all examples * Revert "Add trust_remote_dataset_code arg to some tests" to research_projects * Pass trust_remote_code to tests * Pass trust_remote_code to docstrings * Fix flax examples tests requirements * Pass trust_remote_dataset_code arg to tests * Replace trust_remote_dataset_code with trust_remote_code in one example * Fix duplicate trust_remote_code * Replace args.trust_remote_dataset_code with args.trust_remote_code * Replace trust_remote_dataset_code with trust_remote_code in parser * Replace trust_remote_dataset_code with trust_remote_code in dataclasses * Replace trust_remote_dataset_code with trust_remote_code arg
480 lines
19 KiB
Python
480 lines
19 KiB
Python
#!/usr/bin/env python
|
|
# coding=utf-8
|
|
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
|
|
"""Finetuning 🤗 Transformers model for instance segmentation leveraging the Trainer API."""
|
|
|
|
import logging
|
|
import os
|
|
import sys
|
|
from dataclasses import dataclass, field
|
|
from functools import partial
|
|
from typing import Any, Dict, List, Mapping, Optional
|
|
|
|
import albumentations as A
|
|
import numpy as np
|
|
import torch
|
|
from datasets import load_dataset
|
|
from torchmetrics.detection.mean_ap import MeanAveragePrecision
|
|
|
|
import transformers
|
|
from transformers import (
|
|
AutoImageProcessor,
|
|
AutoModelForUniversalSegmentation,
|
|
HfArgumentParser,
|
|
Trainer,
|
|
TrainingArguments,
|
|
)
|
|
from transformers.image_processing_utils import BatchFeature
|
|
from transformers.trainer import EvalPrediction
|
|
from transformers.trainer_utils import get_last_checkpoint
|
|
from transformers.utils import check_min_version, send_example_telemetry
|
|
from transformers.utils.versions import require_version
|
|
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
|
|
check_min_version("4.42.0.dev0")
|
|
require_version("datasets>=2.0.0", "To fix: pip install -r examples/pytorch/instance-segmentation/requirements.txt")
|
|
|
|
|
|
@dataclass
|
|
class Arguments:
|
|
"""
|
|
Arguments pertaining to what data we are going to input our model for training and eval.
|
|
Using `HfArgumentParser` we can turn this class into argparse arguments to be able to specify
|
|
them on the command line.
|
|
"""
|
|
|
|
model_name_or_path: str = field(
|
|
default="facebook/mask2former-swin-tiny-coco-instance",
|
|
metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"},
|
|
)
|
|
dataset_name: str = field(
|
|
default="qubvel-hf/ade20k-mini",
|
|
metadata={
|
|
"help": "Name of a dataset from the hub (could be your own, possibly private dataset hosted on the hub)."
|
|
},
|
|
)
|
|
trust_remote_code: bool = field(
|
|
default=False,
|
|
metadata={
|
|
"help": (
|
|
"Whether to trust the execution of code from datasets/models defined on the Hub."
|
|
" This option should only be set to `True` for repositories you trust and in which you have read the"
|
|
" code, as it will execute code present on the Hub on your local machine."
|
|
)
|
|
},
|
|
)
|
|
image_height: Optional[int] = field(default=512, metadata={"help": "Image height after resizing."})
|
|
image_width: Optional[int] = field(default=512, metadata={"help": "Image width after resizing."})
|
|
token: str = field(
|
|
default=None,
|
|
metadata={
|
|
"help": (
|
|
"The token to use as HTTP bearer authorization for remote files. If not specified, will use the token "
|
|
"generated when running `huggingface-cli login` (stored in `~/.huggingface`)."
|
|
)
|
|
},
|
|
)
|
|
do_reduce_labels: bool = field(
|
|
default=False,
|
|
metadata={
|
|
"help": (
|
|
"If background class is labeled as 0 and you want to remove it from the labels, set this flag to True."
|
|
)
|
|
},
|
|
)
|
|
|
|
|
|
def augment_and_transform_batch(
|
|
examples: Mapping[str, Any], transform: A.Compose, image_processor: AutoImageProcessor
|
|
) -> BatchFeature:
|
|
batch = {
|
|
"pixel_values": [],
|
|
"mask_labels": [],
|
|
"class_labels": [],
|
|
}
|
|
|
|
for pil_image, pil_annotation in zip(examples["image"], examples["annotation"]):
|
|
image = np.array(pil_image)
|
|
semantic_and_instance_masks = np.array(pil_annotation)[..., :2]
|
|
|
|
# Apply augmentations
|
|
output = transform(image=image, mask=semantic_and_instance_masks)
|
|
|
|
aug_image = output["image"]
|
|
aug_semantic_and_instance_masks = output["mask"]
|
|
aug_instance_mask = aug_semantic_and_instance_masks[..., 1]
|
|
|
|
# Create mapping from instance id to semantic id
|
|
unique_semantic_id_instance_id_pairs = np.unique(aug_semantic_and_instance_masks.reshape(-1, 2), axis=0)
|
|
instance_id_to_semantic_id = {
|
|
instance_id: semantic_id for semantic_id, instance_id in unique_semantic_id_instance_id_pairs
|
|
}
|
|
|
|
# Apply the image processor transformations: resizing, rescaling, normalization
|
|
model_inputs = image_processor(
|
|
images=[aug_image],
|
|
segmentation_maps=[aug_instance_mask],
|
|
instance_id_to_semantic_id=instance_id_to_semantic_id,
|
|
return_tensors="pt",
|
|
)
|
|
|
|
batch["pixel_values"].append(model_inputs.pixel_values[0])
|
|
batch["mask_labels"].append(model_inputs.mask_labels[0])
|
|
batch["class_labels"].append(model_inputs.class_labels[0])
|
|
|
|
return batch
|
|
|
|
|
|
def collate_fn(examples):
|
|
batch = {}
|
|
batch["pixel_values"] = torch.stack([example["pixel_values"] for example in examples])
|
|
batch["class_labels"] = [example["class_labels"] for example in examples]
|
|
batch["mask_labels"] = [example["mask_labels"] for example in examples]
|
|
if "pixel_mask" in examples[0]:
|
|
batch["pixel_mask"] = torch.stack([example["pixel_mask"] for example in examples])
|
|
return batch
|
|
|
|
|
|
@dataclass
|
|
class ModelOutput:
|
|
class_queries_logits: torch.Tensor
|
|
masks_queries_logits: torch.Tensor
|
|
|
|
|
|
def nested_cpu(tensors):
|
|
if isinstance(tensors, (list, tuple)):
|
|
return type(tensors)(nested_cpu(t) for t in tensors)
|
|
elif isinstance(tensors, Mapping):
|
|
return type(tensors)({k: nested_cpu(t) for k, t in tensors.items()})
|
|
elif isinstance(tensors, torch.Tensor):
|
|
return tensors.cpu().detach()
|
|
else:
|
|
return tensors
|
|
|
|
|
|
class Evaluator:
|
|
"""
|
|
Compute metrics for the instance segmentation task.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
image_processor: AutoImageProcessor,
|
|
id2label: Mapping[int, str],
|
|
threshold: float = 0.0,
|
|
):
|
|
"""
|
|
Initialize evaluator with image processor, id2label mapping and threshold for filtering predictions.
|
|
|
|
Args:
|
|
image_processor (AutoImageProcessor): Image processor for
|
|
`post_process_instance_segmentation` method.
|
|
id2label (Mapping[int, str]): Mapping from class id to class name.
|
|
threshold (float): Threshold to filter predicted boxes by confidence. Defaults to 0.0.
|
|
"""
|
|
self.image_processor = image_processor
|
|
self.id2label = id2label
|
|
self.threshold = threshold
|
|
self.metric = self.get_metric()
|
|
|
|
def get_metric(self):
|
|
metric = MeanAveragePrecision(iou_type="segm", class_metrics=True)
|
|
return metric
|
|
|
|
def reset_metric(self):
|
|
self.metric.reset()
|
|
|
|
def postprocess_target_batch(self, target_batch) -> List[Dict[str, torch.Tensor]]:
|
|
"""Collect targets in a form of list of dictionaries with keys "masks", "labels"."""
|
|
batch_masks = target_batch[0]
|
|
batch_labels = target_batch[1]
|
|
post_processed_targets = []
|
|
for masks, labels in zip(batch_masks, batch_labels):
|
|
post_processed_targets.append(
|
|
{
|
|
"masks": masks.to(dtype=torch.bool),
|
|
"labels": labels,
|
|
}
|
|
)
|
|
return post_processed_targets
|
|
|
|
def get_target_sizes(self, post_processed_targets) -> List[List[int]]:
|
|
target_sizes = []
|
|
for target in post_processed_targets:
|
|
target_sizes.append(target["masks"].shape[-2:])
|
|
return target_sizes
|
|
|
|
def postprocess_prediction_batch(self, prediction_batch, target_sizes) -> List[Dict[str, torch.Tensor]]:
|
|
"""Collect predictions in a form of list of dictionaries with keys "masks", "labels", "scores"."""
|
|
|
|
model_output = ModelOutput(class_queries_logits=prediction_batch[0], masks_queries_logits=prediction_batch[1])
|
|
post_processed_output = self.image_processor.post_process_instance_segmentation(
|
|
model_output,
|
|
threshold=self.threshold,
|
|
target_sizes=target_sizes,
|
|
return_binary_maps=True,
|
|
)
|
|
|
|
post_processed_predictions = []
|
|
for image_predictions, target_size in zip(post_processed_output, target_sizes):
|
|
if image_predictions["segments_info"]:
|
|
post_processed_image_prediction = {
|
|
"masks": image_predictions["segmentation"].to(dtype=torch.bool),
|
|
"labels": torch.tensor([x["label_id"] for x in image_predictions["segments_info"]]),
|
|
"scores": torch.tensor([x["score"] for x in image_predictions["segments_info"]]),
|
|
}
|
|
else:
|
|
# for void predictions, we need to provide empty tensors
|
|
post_processed_image_prediction = {
|
|
"masks": torch.zeros([0, *target_size], dtype=torch.bool),
|
|
"labels": torch.tensor([]),
|
|
"scores": torch.tensor([]),
|
|
}
|
|
post_processed_predictions.append(post_processed_image_prediction)
|
|
|
|
return post_processed_predictions
|
|
|
|
@torch.no_grad()
|
|
def __call__(self, evaluation_results: EvalPrediction, compute_result: bool = False) -> Mapping[str, float]:
|
|
"""
|
|
Update metrics with current evaluation results and return metrics if `compute_result` is True.
|
|
|
|
Args:
|
|
evaluation_results (EvalPrediction): Predictions and targets from evaluation.
|
|
compute_result (bool): Whether to compute and return metrics.
|
|
|
|
Returns:
|
|
Mapping[str, float]: Metrics in a form of dictionary {<metric_name>: <metric_value>}
|
|
"""
|
|
prediction_batch = nested_cpu(evaluation_results.predictions)
|
|
target_batch = nested_cpu(evaluation_results.label_ids)
|
|
|
|
# For metric computation we need to provide:
|
|
# - targets in a form of list of dictionaries with keys "masks", "labels"
|
|
# - predictions in a form of list of dictionaries with keys "masks", "labels", "scores"
|
|
post_processed_targets = self.postprocess_target_batch(target_batch)
|
|
target_sizes = self.get_target_sizes(post_processed_targets)
|
|
post_processed_predictions = self.postprocess_prediction_batch(prediction_batch, target_sizes)
|
|
|
|
# Compute metrics
|
|
self.metric.update(post_processed_predictions, post_processed_targets)
|
|
|
|
if not compute_result:
|
|
return
|
|
|
|
metrics = self.metric.compute()
|
|
|
|
# Replace list of per class metrics with separate metric for each class
|
|
classes = metrics.pop("classes")
|
|
map_per_class = metrics.pop("map_per_class")
|
|
mar_100_per_class = metrics.pop("mar_100_per_class")
|
|
for class_id, class_map, class_mar in zip(classes, map_per_class, mar_100_per_class):
|
|
class_name = self.id2label[class_id.item()] if self.id2label is not None else class_id.item()
|
|
metrics[f"map_{class_name}"] = class_map
|
|
metrics[f"mar_100_{class_name}"] = class_mar
|
|
|
|
metrics = {k: round(v.item(), 4) for k, v in metrics.items()}
|
|
|
|
# Reset metric for next evaluation
|
|
self.reset_metric()
|
|
|
|
return metrics
|
|
|
|
|
|
def setup_logging(training_args: TrainingArguments) -> None:
|
|
"""Setup logging according to `training_args`."""
|
|
|
|
logging.basicConfig(
|
|
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
|
|
datefmt="%m/%d/%Y %H:%M:%S",
|
|
handlers=[logging.StreamHandler(sys.stdout)],
|
|
)
|
|
|
|
if training_args.should_log:
|
|
# The default of training_args.log_level is passive, so we set log level at info here to have that default.
|
|
transformers.utils.logging.set_verbosity_info()
|
|
|
|
log_level = training_args.get_process_log_level()
|
|
logger.setLevel(log_level)
|
|
transformers.utils.logging.set_verbosity(log_level)
|
|
transformers.utils.logging.enable_default_handler()
|
|
transformers.utils.logging.enable_explicit_format()
|
|
|
|
|
|
def find_last_checkpoint(training_args: TrainingArguments) -> Optional[str]:
|
|
"""Find the last checkpoint in the output directory according to parameters specified in `training_args`."""
|
|
|
|
checkpoint = None
|
|
if training_args.resume_from_checkpoint is not None:
|
|
checkpoint = training_args.resume_from_checkpoint
|
|
elif os.path.isdir(training_args.output_dir) and not training_args.overwrite_output_dir:
|
|
checkpoint = get_last_checkpoint(training_args.output_dir)
|
|
if checkpoint is None and len(os.listdir(training_args.output_dir)) > 0:
|
|
raise ValueError(
|
|
f"Output directory ({training_args.output_dir}) already exists and is not empty. "
|
|
"Use --overwrite_output_dir to overcome."
|
|
)
|
|
elif checkpoint is not None and training_args.resume_from_checkpoint is None:
|
|
logger.info(
|
|
f"Checkpoint detected, resuming training at {checkpoint}. To avoid this behavior, change "
|
|
"the `--output_dir` or add `--overwrite_output_dir` to train from scratch."
|
|
)
|
|
|
|
return checkpoint
|
|
|
|
|
|
def main():
|
|
# See all possible arguments in https://huggingface.co/docs/transformers/main_classes/trainer#transformers.TrainingArguments
|
|
# or by passing the --help flag to this script.
|
|
|
|
parser = HfArgumentParser([Arguments, TrainingArguments])
|
|
if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
|
|
# If we pass only one argument to the script and it's the path to a json file,
|
|
# let's parse it to get our arguments.
|
|
args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
|
|
else:
|
|
args, training_args = parser.parse_args_into_dataclasses()
|
|
|
|
# Set default training arguments for instance segmentation
|
|
training_args.eval_do_concat_batches = False
|
|
training_args.batch_eval_metrics = True
|
|
training_args.remove_unused_columns = False
|
|
|
|
# # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
|
|
# # information sent is the one passed as arguments along with your Python/PyTorch versions.
|
|
send_example_telemetry("run_instance_segmentation", args)
|
|
|
|
# Setup logging and log on each process the small summary:
|
|
setup_logging(training_args)
|
|
logger.warning(
|
|
f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}, "
|
|
+ f"distributed training: {training_args.parallel_mode.value == 'distributed'}, 16-bits training: {training_args.fp16}"
|
|
)
|
|
logger.info(f"Training/evaluation parameters {training_args}")
|
|
|
|
# Load last checkpoint from output_dir if it exists (and we are not overwriting it)
|
|
checkpoint = find_last_checkpoint(training_args)
|
|
|
|
# ------------------------------------------------------------------------------------------------
|
|
# Load dataset, prepare splits
|
|
# ------------------------------------------------------------------------------------------------
|
|
|
|
dataset = load_dataset(args.dataset_name, trust_remote_code=args.trust_remote_code)
|
|
|
|
# We need to specify the label2id mapping for the model
|
|
# it is a mapping from semantic class name to class index.
|
|
# In case your dataset does not provide it, you can create it manually:
|
|
# label2id = {"background": 0, "cat": 1, "dog": 2}
|
|
label2id = dataset["train"][0]["semantic_class_to_id"]
|
|
|
|
if args.do_reduce_labels:
|
|
label2id = {name: idx for name, idx in label2id.items() if idx != 0} # remove background class
|
|
label2id = {name: idx - 1 for name, idx in label2id.items()} # shift class indices by -1
|
|
|
|
id2label = {v: k for k, v in label2id.items()}
|
|
|
|
# ------------------------------------------------------------------------------------------------
|
|
# Load pretrained config, model and image processor
|
|
# ------------------------------------------------------------------------------------------------
|
|
model = AutoModelForUniversalSegmentation.from_pretrained(
|
|
args.model_name_or_path,
|
|
label2id=label2id,
|
|
id2label=id2label,
|
|
ignore_mismatched_sizes=True,
|
|
token=args.token,
|
|
)
|
|
|
|
image_processor = AutoImageProcessor.from_pretrained(
|
|
args.model_name_or_path,
|
|
do_resize=True,
|
|
size={"height": args.image_height, "width": args.image_width},
|
|
do_reduce_labels=args.do_reduce_labels,
|
|
reduce_labels=args.do_reduce_labels, # TODO: remove when mask2former support `do_reduce_labels`
|
|
token=args.token,
|
|
)
|
|
|
|
# ------------------------------------------------------------------------------------------------
|
|
# Define image augmentations and dataset transforms
|
|
# ------------------------------------------------------------------------------------------------
|
|
train_augment_and_transform = A.Compose(
|
|
[
|
|
A.HorizontalFlip(p=0.5),
|
|
A.RandomBrightnessContrast(p=0.5),
|
|
A.HueSaturationValue(p=0.1),
|
|
],
|
|
)
|
|
validation_transform = A.Compose(
|
|
[A.NoOp()],
|
|
)
|
|
|
|
# Make transform functions for batch and apply for dataset splits
|
|
train_transform_batch = partial(
|
|
augment_and_transform_batch, transform=train_augment_and_transform, image_processor=image_processor
|
|
)
|
|
validation_transform_batch = partial(
|
|
augment_and_transform_batch, transform=validation_transform, image_processor=image_processor
|
|
)
|
|
|
|
dataset["train"] = dataset["train"].with_transform(train_transform_batch)
|
|
dataset["validation"] = dataset["validation"].with_transform(validation_transform_batch)
|
|
|
|
# ------------------------------------------------------------------------------------------------
|
|
# Model training and evaluation with Trainer API
|
|
# ------------------------------------------------------------------------------------------------
|
|
|
|
compute_metrics = Evaluator(image_processor=image_processor, id2label=id2label, threshold=0.0)
|
|
|
|
trainer = Trainer(
|
|
model=model,
|
|
args=training_args,
|
|
train_dataset=dataset["train"] if training_args.do_train else None,
|
|
eval_dataset=dataset["validation"] if training_args.do_eval else None,
|
|
tokenizer=image_processor,
|
|
data_collator=collate_fn,
|
|
compute_metrics=compute_metrics,
|
|
)
|
|
|
|
# Training
|
|
if training_args.do_train:
|
|
train_result = trainer.train(resume_from_checkpoint=checkpoint)
|
|
trainer.save_model()
|
|
trainer.log_metrics("train", train_result.metrics)
|
|
trainer.save_metrics("train", train_result.metrics)
|
|
trainer.save_state()
|
|
|
|
# Final evaluation
|
|
if training_args.do_eval:
|
|
metrics = trainer.evaluate(eval_dataset=dataset["validation"], metric_key_prefix="test")
|
|
trainer.log_metrics("test", metrics)
|
|
trainer.save_metrics("test", metrics)
|
|
|
|
# Write model card and (optionally) push to hub
|
|
kwargs = {
|
|
"finetuned_from": args.model_name_or_path,
|
|
"dataset": args.dataset_name,
|
|
"tags": ["image-segmentation", "instance-segmentation", "vision"],
|
|
}
|
|
if training_args.push_to_hub:
|
|
trainer.push_to_hub(**kwargs)
|
|
else:
|
|
trainer.create_model_card(**kwargs)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
main()
|