mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-06 22:30:09 +06:00

* Reorganize doc for multilingual support * Fix style * Style * Toc trees * Adapt templates
99 lines
2.8 KiB
Plaintext
99 lines
2.8 KiB
Plaintext
<!--Copyright 2020 The HuggingFace Team. All rights reserved.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
|
the License. You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
|
|
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
|
|
specific language governing permissions and limitations under the License.
|
|
-->
|
|
|
|
# DPR
|
|
|
|
## Overview
|
|
|
|
Dense Passage Retrieval (DPR) is a set of tools and models for state-of-the-art open-domain Q&A research. It was
|
|
introduced in [Dense Passage Retrieval for Open-Domain Question Answering](https://arxiv.org/abs/2004.04906) by
|
|
Vladimir Karpukhin, Barlas Oğuz, Sewon Min, Patrick Lewis, Ledell Wu, Sergey Edunov, Danqi Chen, Wen-tau Yih.
|
|
|
|
The abstract from the paper is the following:
|
|
|
|
*Open-domain question answering relies on efficient passage retrieval to select candidate contexts, where traditional
|
|
sparse vector space models, such as TF-IDF or BM25, are the de facto method. In this work, we show that retrieval can
|
|
be practically implemented using dense representations alone, where embeddings are learned from a small number of
|
|
questions and passages by a simple dual-encoder framework. When evaluated on a wide range of open-domain QA datasets,
|
|
our dense retriever outperforms a strong Lucene-BM25 system largely by 9%-19% absolute in terms of top-20 passage
|
|
retrieval accuracy, and helps our end-to-end QA system establish new state-of-the-art on multiple open-domain QA
|
|
benchmarks.*
|
|
|
|
This model was contributed by [lhoestq](https://huggingface.co/lhoestq). The original code can be found [here](https://github.com/facebookresearch/DPR).
|
|
|
|
|
|
## DPRConfig
|
|
|
|
[[autodoc]] DPRConfig
|
|
|
|
## DPRContextEncoderTokenizer
|
|
|
|
[[autodoc]] DPRContextEncoderTokenizer
|
|
|
|
## DPRContextEncoderTokenizerFast
|
|
|
|
[[autodoc]] DPRContextEncoderTokenizerFast
|
|
|
|
## DPRQuestionEncoderTokenizer
|
|
|
|
[[autodoc]] DPRQuestionEncoderTokenizer
|
|
|
|
## DPRQuestionEncoderTokenizerFast
|
|
|
|
[[autodoc]] DPRQuestionEncoderTokenizerFast
|
|
|
|
## DPRReaderTokenizer
|
|
|
|
[[autodoc]] DPRReaderTokenizer
|
|
|
|
## DPRReaderTokenizerFast
|
|
|
|
[[autodoc]] DPRReaderTokenizerFast
|
|
|
|
## DPR specific outputs
|
|
|
|
[[autodoc]] models.dpr.modeling_dpr.DPRContextEncoderOutput
|
|
|
|
[[autodoc]] models.dpr.modeling_dpr.DPRQuestionEncoderOutput
|
|
|
|
[[autodoc]] models.dpr.modeling_dpr.DPRReaderOutput
|
|
|
|
## DPRContextEncoder
|
|
|
|
[[autodoc]] DPRContextEncoder
|
|
- forward
|
|
|
|
## DPRQuestionEncoder
|
|
|
|
[[autodoc]] DPRQuestionEncoder
|
|
- forward
|
|
|
|
## DPRReader
|
|
|
|
[[autodoc]] DPRReader
|
|
- forward
|
|
|
|
## TFDPRContextEncoder
|
|
|
|
[[autodoc]] TFDPRContextEncoder
|
|
- call
|
|
|
|
## TFDPRQuestionEncoder
|
|
|
|
[[autodoc]] TFDPRQuestionEncoder
|
|
- call
|
|
|
|
## TFDPRReader
|
|
|
|
[[autodoc]] TFDPRReader
|
|
- call
|