transformers/examples/research_projects/movement-pruning/Saving_PruneBERT.ipynb
Kashif Rasul 9fe82793ee
[Style] fix E721 warnings (#36474)
* fix E721 warnings

* config.hidden_size is not a tuple

* fix copies

* fix-copies

* not a tuple

* undo

* undo
2025-03-03 18:03:42 +00:00

646 lines
27 KiB
Plaintext

{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Saving PruneBERT\n",
"\n",
"\n",
"This notebook aims at showcasing how we can leverage standard tools to save (and load) an extremely sparse model fine-pruned with [movement pruning](https://arxiv.org/abs/2005.07683) (or any other unstructured pruning mehtod).\n",
"\n",
"In this example, we used BERT (base-uncased, but the procedure described here is not specific to BERT and can be applied to a large variety of models.\n",
"\n",
"We first obtain an extremely sparse model by fine-pruning with movement pruning on SQuAD v1.1. We then used the following combination of standard tools:\n",
"- We reduce the precision of the model with Int8 dynamic quantization using [PyTorch implementation](https://pytorch.org/tutorials/intermediate/dynamic_quantization_bert_tutorial.html). We only quantized the Fully Connected Layers.\n",
"- Sparse quantized matrices are converted into the [Compressed Sparse Row format](https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csr_matrix.html).\n",
"- We use HDF5 with `gzip` compression to store the weights.\n",
"\n",
"We experiment with a question answering model with only 6% of total remaining weights in the encoder (previously obtained with movement pruning). **We are able to reduce the memory size of the encoder from 340MB (original dense BERT) to 11MB**, which fits on a [91' floppy disk](https://en.wikipedia.org/wiki/Floptical)!\n",
"\n",
"<img src=\"https://upload.wikimedia.org/wikipedia/commons/thumb/0/00/Floptical_disk_21MB.jpg/440px-Floptical_disk_21MB.jpg\" width=\"200\">\n",
"\n",
"*Note: this notebook is compatible with `torch>=1.5.0` If you are using, `torch==1.4.0`, please refer to [this previous version of the notebook](https://github.com/huggingface/transformers/commit/b11386e158e86e62d4041eabd86d044cd1695737).*"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"# Includes\n",
"\n",
"import json\n",
"import os\n",
"from collections import OrderedDict\n",
"\n",
"import h5py\n",
"import numpy as np\n",
"import torch\n",
"from scipy import sparse\n",
"from torch import nn\n",
"\n",
"from transformers import BertForQuestionAnswering\n",
"\n",
"\n",
"os.chdir(\"../../\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Saving"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Dynamic quantization induces little or no loss of performance while significantly reducing the memory footprint."
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
"# Load fine-pruned model and quantize the model\n",
"\n",
"model = BertForQuestionAnswering.from_pretrained(\"huggingface/prunebert-base-uncased-6-finepruned-w-distil-squad\")\n",
"model.to(\"cpu\")\n",
"\n",
"quantized_model = torch.quantization.quantize_dynamic(\n",
" model=model,\n",
" qconfig_spec={\n",
" nn.Linear: torch.quantization.default_dynamic_qconfig,\n",
" },\n",
" dtype=torch.qint8,\n",
")\n",
"# print(quantized_model)\n",
"\n",
"qtz_st = quantized_model.state_dict()"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [],
"source": [
"# Saving the original (encoder + classifier) in the standard torch.save format\n",
"\n",
"dense_st = {\n",
" name: param for name, param in model.state_dict().items() if \"embedding\" not in name and \"pooler\" not in name\n",
"}\n",
"torch.save(\n",
" dense_st,\n",
" \"dbg/dense_squad.pt\",\n",
")\n",
"dense_mb_size = os.path.getsize(\"dbg/dense_squad.pt\")"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {
"scrolled": true
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Decompose quantization for bert.encoder.layer.0.attention.self.query._packed_params.weight\n",
"Decompose quantization for bert.encoder.layer.0.attention.self.key._packed_params.weight\n",
"Decompose quantization for bert.encoder.layer.0.attention.self.value._packed_params.weight\n",
"Decompose quantization for bert.encoder.layer.0.attention.output.dense._packed_params.weight\n",
"Decompose quantization for bert.encoder.layer.0.intermediate.dense._packed_params.weight\n",
"Decompose quantization for bert.encoder.layer.0.output.dense._packed_params.weight\n",
"Decompose quantization for bert.encoder.layer.1.attention.self.query._packed_params.weight\n",
"Decompose quantization for bert.encoder.layer.1.attention.self.key._packed_params.weight\n",
"Decompose quantization for bert.encoder.layer.1.attention.self.value._packed_params.weight\n",
"Decompose quantization for bert.encoder.layer.1.attention.output.dense._packed_params.weight\n",
"Decompose quantization for bert.encoder.layer.1.intermediate.dense._packed_params.weight\n",
"Decompose quantization for bert.encoder.layer.1.output.dense._packed_params.weight\n",
"Decompose quantization for bert.encoder.layer.2.attention.self.query._packed_params.weight\n",
"Decompose quantization for bert.encoder.layer.2.attention.self.key._packed_params.weight\n",
"Decompose quantization for bert.encoder.layer.2.attention.self.value._packed_params.weight\n",
"Decompose quantization for bert.encoder.layer.2.attention.output.dense._packed_params.weight\n",
"Decompose quantization for bert.encoder.layer.2.intermediate.dense._packed_params.weight\n",
"Decompose quantization for bert.encoder.layer.2.output.dense._packed_params.weight\n",
"Decompose quantization for bert.encoder.layer.3.attention.self.query._packed_params.weight\n",
"Decompose quantization for bert.encoder.layer.3.attention.self.key._packed_params.weight\n",
"Decompose quantization for bert.encoder.layer.3.attention.self.value._packed_params.weight\n",
"Decompose quantization for bert.encoder.layer.3.attention.output.dense._packed_params.weight\n",
"Decompose quantization for bert.encoder.layer.3.intermediate.dense._packed_params.weight\n",
"Decompose quantization for bert.encoder.layer.3.output.dense._packed_params.weight\n",
"Decompose quantization for bert.encoder.layer.4.attention.self.query._packed_params.weight\n",
"Decompose quantization for bert.encoder.layer.4.attention.self.key._packed_params.weight\n",
"Decompose quantization for bert.encoder.layer.4.attention.self.value._packed_params.weight\n",
"Decompose quantization for bert.encoder.layer.4.attention.output.dense._packed_params.weight\n",
"Decompose quantization for bert.encoder.layer.4.intermediate.dense._packed_params.weight\n",
"Decompose quantization for bert.encoder.layer.4.output.dense._packed_params.weight\n",
"Decompose quantization for bert.encoder.layer.5.attention.self.query._packed_params.weight\n",
"Decompose quantization for bert.encoder.layer.5.attention.self.key._packed_params.weight\n",
"Decompose quantization for bert.encoder.layer.5.attention.self.value._packed_params.weight\n",
"Decompose quantization for bert.encoder.layer.5.attention.output.dense._packed_params.weight\n",
"Decompose quantization for bert.encoder.layer.5.intermediate.dense._packed_params.weight\n",
"Decompose quantization for bert.encoder.layer.5.output.dense._packed_params.weight\n",
"Decompose quantization for bert.encoder.layer.6.attention.self.query._packed_params.weight\n",
"Decompose quantization for bert.encoder.layer.6.attention.self.key._packed_params.weight\n",
"Decompose quantization for bert.encoder.layer.6.attention.self.value._packed_params.weight\n",
"Decompose quantization for bert.encoder.layer.6.attention.output.dense._packed_params.weight\n",
"Decompose quantization for bert.encoder.layer.6.intermediate.dense._packed_params.weight\n",
"Decompose quantization for bert.encoder.layer.6.output.dense._packed_params.weight\n",
"Decompose quantization for bert.encoder.layer.7.attention.self.query._packed_params.weight\n",
"Decompose quantization for bert.encoder.layer.7.attention.self.key._packed_params.weight\n",
"Decompose quantization for bert.encoder.layer.7.attention.self.value._packed_params.weight\n",
"Decompose quantization for bert.encoder.layer.7.attention.output.dense._packed_params.weight\n",
"Decompose quantization for bert.encoder.layer.7.intermediate.dense._packed_params.weight\n",
"Decompose quantization for bert.encoder.layer.7.output.dense._packed_params.weight\n",
"Decompose quantization for bert.encoder.layer.8.attention.self.query._packed_params.weight\n",
"Decompose quantization for bert.encoder.layer.8.attention.self.key._packed_params.weight\n",
"Decompose quantization for bert.encoder.layer.8.attention.self.value._packed_params.weight\n",
"Decompose quantization for bert.encoder.layer.8.attention.output.dense._packed_params.weight\n",
"Decompose quantization for bert.encoder.layer.8.intermediate.dense._packed_params.weight\n",
"Decompose quantization for bert.encoder.layer.8.output.dense._packed_params.weight\n",
"Decompose quantization for bert.encoder.layer.9.attention.self.query._packed_params.weight\n",
"Decompose quantization for bert.encoder.layer.9.attention.self.key._packed_params.weight\n",
"Decompose quantization for bert.encoder.layer.9.attention.self.value._packed_params.weight\n",
"Decompose quantization for bert.encoder.layer.9.attention.output.dense._packed_params.weight\n",
"Decompose quantization for bert.encoder.layer.9.intermediate.dense._packed_params.weight\n",
"Decompose quantization for bert.encoder.layer.9.output.dense._packed_params.weight\n",
"Decompose quantization for bert.encoder.layer.10.attention.self.query._packed_params.weight\n",
"Decompose quantization for bert.encoder.layer.10.attention.self.key._packed_params.weight\n",
"Decompose quantization for bert.encoder.layer.10.attention.self.value._packed_params.weight\n",
"Decompose quantization for bert.encoder.layer.10.attention.output.dense._packed_params.weight\n",
"Decompose quantization for bert.encoder.layer.10.intermediate.dense._packed_params.weight\n",
"Decompose quantization for bert.encoder.layer.10.output.dense._packed_params.weight\n",
"Decompose quantization for bert.encoder.layer.11.attention.self.query._packed_params.weight\n",
"Decompose quantization for bert.encoder.layer.11.attention.self.key._packed_params.weight\n",
"Decompose quantization for bert.encoder.layer.11.attention.self.value._packed_params.weight\n",
"Decompose quantization for bert.encoder.layer.11.attention.output.dense._packed_params.weight\n",
"Decompose quantization for bert.encoder.layer.11.intermediate.dense._packed_params.weight\n",
"Decompose quantization for bert.encoder.layer.11.output.dense._packed_params.weight\n",
"Decompose quantization for bert.pooler.dense._packed_params.weight\n",
"Decompose quantization for qa_outputs._packed_params.weight\n"
]
}
],
"source": [
"# Elementary representation: we decompose the quantized tensors into (scale, zero_point, int_repr).\n",
"# See https://pytorch.org/docs/stable/quantization.html\n",
"\n",
"# We further leverage the fact that int_repr is sparse matrix to optimize the storage: we decompose int_repr into\n",
"# its CSR representation (data, indptr, indices).\n",
"\n",
"elementary_qtz_st = {}\n",
"for name, param in qtz_st.items():\n",
" if \"dtype\" not in name and param.is_quantized:\n",
" print(\"Decompose quantization for\", name)\n",
" # We need to extract the scale, the zero_point and the int_repr for the quantized tensor and modules\n",
" scale = param.q_scale() # torch.tensor(1,) - float32\n",
" zero_point = param.q_zero_point() # torch.tensor(1,) - int32\n",
" elementary_qtz_st[f\"{name}.scale\"] = scale\n",
" elementary_qtz_st[f\"{name}.zero_point\"] = zero_point\n",
"\n",
" # We assume the int_repr is sparse and compute its CSR representation\n",
" # Only the FCs in the encoder are actually sparse\n",
" int_repr = param.int_repr() # torch.tensor(nb_rows, nb_columns) - int8\n",
" int_repr_cs = sparse.csr_matrix(int_repr) # scipy.sparse.csr.csr_matrix\n",
"\n",
" elementary_qtz_st[f\"{name}.int_repr.data\"] = int_repr_cs.data # np.array int8\n",
" elementary_qtz_st[f\"{name}.int_repr.indptr\"] = int_repr_cs.indptr # np.array int32\n",
" assert max(int_repr_cs.indices) < 65535 # If not, we shall fall back to int32\n",
" elementary_qtz_st[f\"{name}.int_repr.indices\"] = np.uint16(int_repr_cs.indices) # np.array uint16\n",
" elementary_qtz_st[f\"{name}.int_repr.shape\"] = int_repr_cs.shape # tuple(int, int)\n",
" else:\n",
" elementary_qtz_st[name] = param"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [],
"source": [
"# Create mapping from torch.dtype to string description (we could also used an int8 instead of string)\n",
"str_2_dtype = {\"qint8\": torch.qint8}\n",
"dtype_2_str = {torch.qint8: \"qint8\"}"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {
"scrolled": true
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Encoder Size (MB) - Sparse & Quantized - `torch.save`: 21.29\n"
]
}
],
"source": [
"# Saving the pruned (encoder + classifier) in the standard torch.save format\n",
"\n",
"dense_optimized_st = {\n",
" name: param for name, param in elementary_qtz_st.items() if \"embedding\" not in name and \"pooler\" not in name\n",
"}\n",
"torch.save(\n",
" dense_optimized_st,\n",
" \"dbg/dense_squad_optimized.pt\",\n",
")\n",
"print(\n",
" \"Encoder Size (MB) - Sparse & Quantized - `torch.save`:\",\n",
" round(os.path.getsize(\"dbg/dense_squad_optimized.pt\") / 1e6, 2),\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Skip bert.embeddings.word_embeddings.weight\n",
"Skip bert.embeddings.position_embeddings.weight\n",
"Skip bert.embeddings.token_type_embeddings.weight\n",
"Skip bert.embeddings.LayerNorm.weight\n",
"Skip bert.embeddings.LayerNorm.bias\n",
"Skip bert.pooler.dense.scale\n",
"Skip bert.pooler.dense.zero_point\n",
"Skip bert.pooler.dense._packed_params.weight.scale\n",
"Skip bert.pooler.dense._packed_params.weight.zero_point\n",
"Skip bert.pooler.dense._packed_params.weight.int_repr.data\n",
"Skip bert.pooler.dense._packed_params.weight.int_repr.indptr\n",
"Skip bert.pooler.dense._packed_params.weight.int_repr.indices\n",
"Skip bert.pooler.dense._packed_params.weight.int_repr.shape\n",
"Skip bert.pooler.dense._packed_params.bias\n",
"Skip bert.pooler.dense._packed_params.dtype\n",
"\n",
"Encoder Size (MB) - Dense: 340.26\n",
"Encoder Size (MB) - Sparse & Quantized: 11.28\n"
]
}
],
"source": [
"# Save the decomposed state_dict with an HDF5 file\n",
"# Saving only the encoder + QA Head\n",
"\n",
"with h5py.File(\"dbg/squad_sparse.h5\", \"w\") as hf:\n",
" for name, param in elementary_qtz_st.items():\n",
" if \"embedding\" in name:\n",
" print(f\"Skip {name}\")\n",
" continue\n",
"\n",
" if \"pooler\" in name:\n",
" print(f\"Skip {name}\")\n",
" continue\n",
"\n",
" if isinstance(param, torch.Tensor):\n",
" if param.numel() == 1:\n",
" # module scale\n",
" # module zero_point\n",
" hf.attrs[name] = param\n",
" continue\n",
"\n",
" if param.requires_grad:\n",
" # LayerNorm\n",
" param = param.detach().numpy()\n",
" hf.create_dataset(name, data=param, compression=\"gzip\", compression_opts=9)\n",
"\n",
" elif isinstance(param, (float, int, tuple)):\n",
" # float - tensor _packed_params.weight.scale\n",
" # int - tensor _packed_params.weight.zero_point\n",
" # tuple - tensor _packed_params.weight.shape\n",
" hf.attrs[name] = param\n",
"\n",
" elif isinstance(param, torch.dtype):\n",
" # dtype - tensor _packed_params.dtype\n",
" hf.attrs[name] = dtype_2_str[param]\n",
"\n",
" else:\n",
" hf.create_dataset(name, data=param, compression=\"gzip\", compression_opts=9)\n",
"\n",
"\n",
"with open(\"dbg/metadata.json\", \"w\") as f:\n",
" f.write(json.dumps(qtz_st._metadata))\n",
"\n",
"size = os.path.getsize(\"dbg/squad_sparse.h5\") + os.path.getsize(\"dbg/metadata.json\")\n",
"print(\"\")\n",
"print(\"Encoder Size (MB) - Dense: \", round(dense_mb_size / 1e6, 2))\n",
"print(\"Encoder Size (MB) - Sparse & Quantized:\", round(size / 1e6, 2))"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"Size (MB): 99.41\n"
]
}
],
"source": [
"# Save the decomposed state_dict to HDF5 storage\n",
"# Save everything in the architecutre (embedding + encoder + QA Head)\n",
"\n",
"with h5py.File(\"dbg/squad_sparse_with_embs.h5\", \"w\") as hf:\n",
" for name, param in elementary_qtz_st.items():\n",
" # if \"embedding\" in name:\n",
" # print(f\"Skip {name}\")\n",
" # continue\n",
"\n",
" # if \"pooler\" in name:\n",
" # print(f\"Skip {name}\")\n",
" # continue\n",
"\n",
" if isinstance(param, torch.Tensor):\n",
" if param.numel() == 1:\n",
" # module scale\n",
" # module zero_point\n",
" hf.attrs[name] = param\n",
" continue\n",
"\n",
" if param.requires_grad:\n",
" # LayerNorm\n",
" param = param.detach().numpy()\n",
" hf.create_dataset(name, data=param, compression=\"gzip\", compression_opts=9)\n",
"\n",
" elif isinstance(param, (float, int, tuple)):\n",
" # float - tensor _packed_params.weight.scale\n",
" # int - tensor _packed_params.weight.zero_point\n",
" # tuple - tensor _packed_params.weight.shape\n",
" hf.attrs[name] = param\n",
"\n",
" elif isinstance(param, torch.dtype):\n",
" # dtype - tensor _packed_params.dtype\n",
" hf.attrs[name] = dtype_2_str[param]\n",
"\n",
" else:\n",
" hf.create_dataset(name, data=param, compression=\"gzip\", compression_opts=9)\n",
"\n",
"\n",
"with open(\"dbg/metadata.json\", \"w\") as f:\n",
" f.write(json.dumps(qtz_st._metadata))\n",
"\n",
"size = os.path.getsize(\"dbg/squad_sparse_with_embs.h5\") + os.path.getsize(\"dbg/metadata.json\")\n",
"print(\"\\nSize (MB):\", round(size / 1e6, 2))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Loading"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {},
"outputs": [],
"source": [
"# Reconstruct the elementary state dict\n",
"\n",
"reconstructed_elementary_qtz_st = {}\n",
"\n",
"hf = h5py.File(\"dbg/squad_sparse_with_embs.h5\", \"r\")\n",
"\n",
"for attr_name, attr_param in hf.attrs.items():\n",
" if \"shape\" in attr_name:\n",
" attr_param = tuple(attr_param)\n",
" elif \".scale\" in attr_name:\n",
" if \"_packed_params\" in attr_name:\n",
" attr_param = float(attr_param)\n",
" else:\n",
" attr_param = torch.tensor(attr_param)\n",
" elif \".zero_point\" in attr_name:\n",
" if \"_packed_params\" in attr_name:\n",
" attr_param = int(attr_param)\n",
" else:\n",
" attr_param = torch.tensor(attr_param)\n",
" elif \".dtype\" in attr_name:\n",
" attr_param = str_2_dtype[attr_param]\n",
" reconstructed_elementary_qtz_st[attr_name] = attr_param\n",
" # print(f\"Unpack {attr_name}\")\n",
"\n",
"# Get the tensors/arrays\n",
"for data_name, data_param in hf.items():\n",
" if \"LayerNorm\" in data_name or \"_packed_params.bias\" in data_name:\n",
" reconstructed_elementary_qtz_st[data_name] = torch.from_numpy(np.array(data_param))\n",
" elif \"embedding\" in data_name:\n",
" reconstructed_elementary_qtz_st[data_name] = torch.from_numpy(np.array(data_param))\n",
" else: # _packed_params.weight.int_repr.data, _packed_params.weight.int_repr.indices and _packed_params.weight.int_repr.indptr\n",
" data_param = np.array(data_param)\n",
" if \"indices\" in data_name:\n",
" data_param = np.array(data_param, dtype=np.int32)\n",
" reconstructed_elementary_qtz_st[data_name] = data_param\n",
" # print(f\"Unpack {data_name}\")\n",
"\n",
"\n",
"hf.close()"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {},
"outputs": [],
"source": [
"# Sanity checks\n",
"\n",
"for name, param in reconstructed_elementary_qtz_st.items():\n",
" assert name in elementary_qtz_st\n",
"for name, param in elementary_qtz_st.items():\n",
" assert name in reconstructed_elementary_qtz_st, name\n",
"\n",
"for name, param in reconstructed_elementary_qtz_st.items():\n",
" assert isinstance(param, type(elementary_qtz_st[name])), name\n",
" if isinstance(param, torch.Tensor):\n",
" assert torch.all(torch.eq(param, elementary_qtz_st[name])), name\n",
" elif isinstance(param, np.ndarray):\n",
" assert (param == elementary_qtz_st[name]).all(), name\n",
" else:\n",
" assert param == elementary_qtz_st[name], name"
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {},
"outputs": [],
"source": [
"# Re-assemble the sparse int_repr from the CSR format\n",
"\n",
"reconstructed_qtz_st = {}\n",
"\n",
"for name, param in reconstructed_elementary_qtz_st.items():\n",
" if \"weight.int_repr.indptr\" in name:\n",
" prefix_ = name[:-16]\n",
" data = reconstructed_elementary_qtz_st[f\"{prefix_}.int_repr.data\"]\n",
" indptr = reconstructed_elementary_qtz_st[f\"{prefix_}.int_repr.indptr\"]\n",
" indices = reconstructed_elementary_qtz_st[f\"{prefix_}.int_repr.indices\"]\n",
" shape = reconstructed_elementary_qtz_st[f\"{prefix_}.int_repr.shape\"]\n",
"\n",
" int_repr = sparse.csr_matrix(arg1=(data, indices, indptr), shape=shape)\n",
" int_repr = torch.tensor(int_repr.todense())\n",
"\n",
" scale = reconstructed_elementary_qtz_st[f\"{prefix_}.scale\"]\n",
" zero_point = reconstructed_elementary_qtz_st[f\"{prefix_}.zero_point\"]\n",
" weight = torch._make_per_tensor_quantized_tensor(int_repr, scale, zero_point)\n",
"\n",
" reconstructed_qtz_st[f\"{prefix_}\"] = weight\n",
" elif (\n",
" \"int_repr.data\" in name\n",
" or \"int_repr.shape\" in name\n",
" or \"int_repr.indices\" in name\n",
" or \"weight.scale\" in name\n",
" or \"weight.zero_point\" in name\n",
" ):\n",
" continue\n",
" else:\n",
" reconstructed_qtz_st[name] = param"
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {},
"outputs": [],
"source": [
"# Sanity checks\n",
"\n",
"for name, param in reconstructed_qtz_st.items():\n",
" assert name in qtz_st\n",
"for name, param in qtz_st.items():\n",
" assert name in reconstructed_qtz_st, name\n",
"\n",
"for name, param in reconstructed_qtz_st.items():\n",
" assert isinstance(param, type(qtz_st[name])), name\n",
" if isinstance(param, torch.Tensor):\n",
" assert torch.all(torch.eq(param, qtz_st[name])), name\n",
" elif isinstance(param, np.ndarray):\n",
" assert (param == qtz_st[name]).all(), name\n",
" else:\n",
" assert param == qtz_st[name], name"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Sanity checks"
]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"<All keys matched successfully>"
]
},
"execution_count": 13,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Load the re-constructed state dict into a model\n",
"\n",
"dummy_model = BertForQuestionAnswering.from_pretrained(\"bert-base-uncased\")\n",
"dummy_model.to(\"cpu\")\n",
"\n",
"reconstructed_qtz_model = torch.quantization.quantize_dynamic(\n",
" model=dummy_model,\n",
" qconfig_spec=None,\n",
" dtype=torch.qint8,\n",
")\n",
"\n",
"reconstructed_qtz_st = OrderedDict(reconstructed_qtz_st)\n",
"with open(\"dbg/metadata.json\", \"r\") as read_file:\n",
" metadata = json.loads(read_file.read())\n",
"reconstructed_qtz_st._metadata = metadata\n",
"\n",
"reconstructed_qtz_model.load_state_dict(reconstructed_qtz_st)"
]
},
{
"cell_type": "code",
"execution_count": 14,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Sanity check passed\n"
]
}
],
"source": [
"# Sanity checks on the infernce\n",
"\n",
"N = 32\n",
"\n",
"for _ in range(25):\n",
" inputs = torch.randint(low=0, high=30000, size=(N, 128))\n",
" mask = torch.ones(size=(N, 128))\n",
"\n",
" y_reconstructed = reconstructed_qtz_model(input_ids=inputs, attention_mask=mask)[0]\n",
" y = quantized_model(input_ids=inputs, attention_mask=mask)[0]\n",
"\n",
" assert torch.all(torch.eq(y, y_reconstructed))\n",
"print(\"Sanity check passed\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.8"
}
},
"nbformat": 4,
"nbformat_minor": 4
}