transformers/tests/pipelines/test_pipelines_video_classification.py
Nathan Raw 9e56aff58a
Add video classification pipeline (#20151)
* 🚧 wip video classification pipeline

* 🚧 wip - add is_decord_available check

* 🐛 add missing import

*  add tests

* 🔧 add decord to setup extras

* 🚧 add is_decord_available

*  add video-classification pipeline

* 📝 add video classification pipe to docs

* 🐛 add missing VideoClassificationPipeline import

* 📌 add decord install in test runner

*  fix url inputs to video-classification pipeline

*  updates from review

* 📝 add video cls pipeline to docs

* 📝 add docstring

* 🔥 remove unused import

* 🔥 remove some code

* 📝 docfix
2022-12-08 16:22:43 -05:00

97 lines
3.4 KiB
Python

# Copyright 2021 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
from huggingface_hub import hf_hub_download
from transformers import MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, VideoMAEFeatureExtractor
from transformers.pipelines import VideoClassificationPipeline, pipeline
from transformers.testing_utils import (
nested_simplify,
require_decord,
require_tf,
require_torch,
require_torch_or_tf,
require_vision,
)
from .test_pipelines_common import ANY, PipelineTestCaseMeta
@require_torch_or_tf
@require_vision
@require_decord
class VideoClassificationPipelineTests(unittest.TestCase, metaclass=PipelineTestCaseMeta):
model_mapping = MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING
def get_test_pipeline(self, model, tokenizer, feature_extractor):
example_video_filepath = hf_hub_download(
repo_id="nateraw/video-demo", filename="archery.mp4", repo_type="dataset"
)
video_classifier = VideoClassificationPipeline(model=model, feature_extractor=feature_extractor, top_k=2)
examples = [
example_video_filepath,
"https://huggingface.co/datasets/nateraw/video-demo/resolve/main/archery.mp4",
]
return video_classifier, examples
def run_pipeline_test(self, video_classifier, examples):
for example in examples:
outputs = video_classifier(example)
self.assertEqual(
outputs,
[
{"score": ANY(float), "label": ANY(str)},
{"score": ANY(float), "label": ANY(str)},
],
)
@require_torch
def test_small_model_pt(self):
small_model = "hf-internal-testing/tiny-random-VideoMAEForVideoClassification"
small_feature_extractor = VideoMAEFeatureExtractor(
size=dict(shortest_edge=10), crop_size=dict(height=10, width=10)
)
video_classifier = pipeline(
"video-classification", model=small_model, feature_extractor=small_feature_extractor, frame_sampling_rate=4
)
video_file_path = hf_hub_download(repo_id="nateraw/video-demo", filename="archery.mp4", repo_type="dataset")
outputs = video_classifier(video_file_path, top_k=2)
self.assertEqual(
nested_simplify(outputs, decimals=4),
[{"score": 0.5199, "label": "LABEL_0"}, {"score": 0.4801, "label": "LABEL_1"}],
)
outputs = video_classifier(
[
video_file_path,
video_file_path,
],
top_k=2,
)
self.assertEqual(
nested_simplify(outputs, decimals=4),
[
[{"score": 0.5199, "label": "LABEL_0"}, {"score": 0.4801, "label": "LABEL_1"}],
[{"score": 0.5199, "label": "LABEL_0"}, {"score": 0.4801, "label": "LABEL_1"}],
],
)
@require_tf
def test_small_model_tf(self):
pass