mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-04 05:10:06 +06:00

* Deprecate prepare_seq2seq_batch * Fix last tests * Apply suggestions from code review Co-authored-by: Lysandre Debut <lysandre@huggingface.co> Co-authored-by: Suraj Patil <surajp815@gmail.com> * More review comments Co-authored-by: Lysandre Debut <lysandre@huggingface.co> Co-authored-by: Suraj Patil <surajp815@gmail.com>
97 lines
4.7 KiB
ReStructuredText
97 lines
4.7 KiB
ReStructuredText
..
|
|
Copyright 2020 The HuggingFace Team. All rights reserved.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
|
the License. You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
|
|
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
|
|
specific language governing permissions and limitations under the License.
|
|
|
|
RAG
|
|
-----------------------------------------------------------------------------------------------------------------------
|
|
|
|
Overview
|
|
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
|
|
Retrieval-augmented generation ("RAG") models combine the powers of pretrained dense retrieval (DPR) and
|
|
sequence-to-sequence models. RAG models retrieve documents, pass them to a seq2seq model, then marginalize to generate
|
|
outputs. The retriever and seq2seq modules are initialized from pretrained models, and fine-tuned jointly, allowing
|
|
both retrieval and generation to adapt to downstream tasks.
|
|
|
|
It is based on the paper `Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks
|
|
<https://arxiv.org/abs/2005.11401>`__ by Patrick Lewis, Ethan Perez, Aleksandara Piktus, Fabio Petroni, Vladimir
|
|
Karpukhin, Naman Goyal, Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, Sebastian Riedel, Douwe Kiela.
|
|
|
|
The abstract from the paper is the following:
|
|
|
|
*Large pre-trained language models have been shown to store factual knowledge in their parameters, and achieve
|
|
state-of-the-art results when fine-tuned on downstream NLP tasks. However, their ability to access and precisely
|
|
manipulate knowledge is still limited, and hence on knowledge-intensive tasks, their performance lags behind
|
|
task-specific architectures. Additionally, providing provenance for their decisions and updating their world knowledge
|
|
remain open research problems. Pre-trained models with a differentiable access mechanism to explicit nonparametric
|
|
memory can overcome this issue, but have so far been only investigated for extractive downstream tasks. We explore a
|
|
general-purpose fine-tuning recipe for retrieval-augmented generation (RAG) — models which combine pre-trained
|
|
parametric and non-parametric memory for language generation. We introduce RAG models where the parametric memory is a
|
|
pre-trained seq2seq model and the non-parametric memory is a dense vector index of Wikipedia, accessed with a
|
|
pre-trained neural retriever. We compare two RAG formulations, one which conditions on the same retrieved passages
|
|
across the whole generated sequence, the other can use different passages per token. We fine-tune and evaluate our
|
|
models on a wide range of knowledge-intensive NLP tasks and set the state-of-the-art on three open domain QA tasks,
|
|
outperforming parametric seq2seq models and task-specific retrieve-and-extract architectures. For language generation
|
|
tasks, we find that RAG models generate more specific, diverse and factual language than a state-of-the-art
|
|
parametric-only seq2seq baseline.*
|
|
|
|
|
|
|
|
RagConfig
|
|
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
|
|
.. autoclass:: transformers.RagConfig
|
|
:members:
|
|
|
|
|
|
RagTokenizer
|
|
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
|
|
.. autoclass:: transformers.RagTokenizer
|
|
:members:
|
|
|
|
|
|
Rag specific outputs
|
|
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
|
|
.. autoclass:: transformers.models.rag.modeling_rag.RetrievAugLMMarginOutput
|
|
:members:
|
|
|
|
.. autoclass:: transformers.models.rag.modeling_rag.RetrievAugLMOutput
|
|
:members:
|
|
|
|
RagRetriever
|
|
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
|
|
.. autoclass:: transformers.RagRetriever
|
|
:members:
|
|
|
|
|
|
RagModel
|
|
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
|
|
.. autoclass:: transformers.RagModel
|
|
:members: forward
|
|
|
|
|
|
RagSequenceForGeneration
|
|
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
|
|
.. autoclass:: transformers.RagSequenceForGeneration
|
|
:members: forward, generate
|
|
|
|
|
|
RagTokenForGeneration
|
|
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
|
|
.. autoclass:: transformers.RagTokenForGeneration
|
|
:members: forward, generate
|