mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-03 21:00:08 +06:00

* Make EoMT compatible with pipeline
* Implicit patch offsets
* remove patch offsets from arg
* Modify tests
* Update example
* fix proc testcase
* Add few more args
* add pipeline test suite
* fix
* docstring fixes
* add pipeline test
* changes w.r.t review
* 🙈 MB
* should fix device mismatch
* debug
* Fixes device mismatch
* use decorator
* we can split mlp
* expected values update
---------
Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>
483 lines
20 KiB
Python
483 lines
20 KiB
Python
# Copyright 2025 The HuggingFace Inc. team. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""Testing suite for the PyTorch EoMT model."""
|
|
|
|
import unittest
|
|
|
|
import requests
|
|
|
|
from transformers import AutoImageProcessor, EomtConfig, EomtForUniversalSegmentation, pipeline
|
|
from transformers.testing_utils import require_torch, require_torch_accelerator, require_torch_fp16, slow, torch_device
|
|
from transformers.utils import is_torch_available, is_vision_available
|
|
|
|
from ...test_configuration_common import ConfigTester
|
|
from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor
|
|
from ...test_pipeline_mixin import PipelineTesterMixin
|
|
|
|
|
|
if is_torch_available():
|
|
import torch
|
|
|
|
|
|
if is_vision_available():
|
|
from PIL import Image
|
|
|
|
|
|
class EomtForUniversalSegmentationTester:
|
|
def __init__(
|
|
self,
|
|
parent,
|
|
batch_size=2,
|
|
is_training=True,
|
|
image_size=40,
|
|
patch_size=2,
|
|
num_queries=5,
|
|
num_register_tokens=19,
|
|
num_labels=4,
|
|
hidden_size=8,
|
|
num_attention_heads=2,
|
|
num_hidden_layers=4,
|
|
):
|
|
self.parent = parent
|
|
self.batch_size = batch_size
|
|
self.is_training = is_training
|
|
self.num_queries = num_queries
|
|
self.image_size = image_size
|
|
self.patch_size = patch_size
|
|
self.num_labels = num_labels
|
|
self.hidden_size = hidden_size
|
|
self.num_attention_heads = num_attention_heads
|
|
self.num_hidden_layers = num_hidden_layers
|
|
self.num_register_tokens = num_register_tokens
|
|
|
|
num_patches = (image_size // patch_size) ** 2
|
|
self.seq_length = num_patches + 1
|
|
|
|
def get_config(self):
|
|
config = {
|
|
"image_size": self.image_size,
|
|
"patch_size": self.patch_size,
|
|
"num_labels": self.num_labels,
|
|
"hidden_size": self.hidden_size,
|
|
"num_attention_heads": self.num_attention_heads,
|
|
"num_hidden_layers": self.num_hidden_layers,
|
|
"num_register_tokens": self.num_register_tokens,
|
|
"num_queries": self.num_queries,
|
|
"num_blocks": 1,
|
|
}
|
|
return EomtConfig(**config)
|
|
|
|
def prepare_config_and_inputs(self):
|
|
pixel_values = floats_tensor([self.batch_size, 3, self.image_size, self.image_size]).to(torch_device)
|
|
|
|
mask_labels = (
|
|
torch.rand([self.batch_size, self.num_labels, self.image_size, self.image_size], device=torch_device) > 0.5
|
|
).float()
|
|
class_labels = (torch.rand((self.batch_size, self.num_labels), device=torch_device) > 0.5).long()
|
|
|
|
config = self.get_config()
|
|
return config, pixel_values, mask_labels, class_labels
|
|
|
|
def prepare_config_and_inputs_for_common(self):
|
|
config, pixel_values, mask_labels, class_labels = self.prepare_config_and_inputs()
|
|
inputs_dict = {"pixel_values": pixel_values}
|
|
return config, inputs_dict
|
|
|
|
def prepare_config_and_inputs_for_training(self):
|
|
config, pixel_values, mask_labels, class_labels = self.prepare_config_and_inputs()
|
|
inputs_dict = {"pixel_values": pixel_values, "mask_labels": mask_labels, "class_labels": class_labels}
|
|
return config, inputs_dict
|
|
|
|
|
|
@require_torch
|
|
class EomtForUniversalSegmentationTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase):
|
|
all_model_classes = (EomtForUniversalSegmentation,) if is_torch_available() else ()
|
|
pipeline_model_mapping = {"image-segmentation": EomtForUniversalSegmentation} if is_torch_available() else {}
|
|
is_encoder_decoder = False
|
|
test_pruning = False
|
|
test_head_masking = False
|
|
test_missing_keys = False
|
|
test_torch_exportable = False
|
|
|
|
def setUp(self):
|
|
self.model_tester = EomtForUniversalSegmentationTester(self)
|
|
self.config_tester = ConfigTester(self, config_class=EomtConfig, has_text_modality=False)
|
|
|
|
def test_config(self):
|
|
self.config_tester.run_common_tests()
|
|
|
|
def test_model_with_labels(self):
|
|
size = (self.model_tester.image_size,) * 2
|
|
inputs = {
|
|
"pixel_values": torch.randn((2, 3, *size), device=torch_device),
|
|
"mask_labels": torch.randn((2, 10, *size), device=torch_device),
|
|
"class_labels": torch.zeros(2, 10, device=torch_device).long(),
|
|
}
|
|
config = self.model_tester.get_config()
|
|
|
|
model = EomtForUniversalSegmentation(config).to(torch_device)
|
|
outputs = model(**inputs)
|
|
self.assertTrue(outputs.loss is not None)
|
|
|
|
def test_attention_outputs(self):
|
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
|
|
config.return_dict = True
|
|
|
|
for model_class in self.all_model_classes:
|
|
inputs_dict["output_attentions"] = True
|
|
inputs_dict["output_hidden_states"] = False
|
|
config.return_dict = True
|
|
model = model_class._from_config(config, attn_implementation="eager")
|
|
config = model.config
|
|
model.to(torch_device)
|
|
model.eval()
|
|
with torch.no_grad():
|
|
outputs = model(**self._prepare_for_class(inputs_dict, model_class))
|
|
attentions = outputs.attentions
|
|
self.assertEqual(len(attentions), self.model_tester.num_hidden_layers)
|
|
|
|
# Check that output_attentions also work using config
|
|
del inputs_dict["output_attentions"]
|
|
config.output_attentions = True
|
|
model = model_class(config)
|
|
model.to(torch_device)
|
|
model.eval()
|
|
with torch.no_grad():
|
|
outputs = model(**self._prepare_for_class(inputs_dict, model_class))
|
|
attentions = outputs.attentions
|
|
self.assertEqual(len(attentions), self.model_tester.num_hidden_layers)
|
|
|
|
out_len = len(outputs)
|
|
# Check attention is always last and order is fine
|
|
inputs_dict["output_attentions"] = True
|
|
inputs_dict["output_hidden_states"] = True
|
|
model = model_class(config)
|
|
model.to(torch_device)
|
|
model.eval()
|
|
with torch.no_grad():
|
|
outputs = model(**self._prepare_for_class(inputs_dict, model_class))
|
|
|
|
added_hidden_states = 1
|
|
self.assertEqual(out_len + added_hidden_states, len(outputs))
|
|
|
|
self_attentions = outputs.attentions
|
|
self.assertEqual(len(self_attentions), self.model_tester.num_hidden_layers)
|
|
|
|
def test_hidden_states_output(self):
|
|
def check_hidden_states_output(inputs_dict, config, model_class):
|
|
model = model_class(config)
|
|
model.to(torch_device)
|
|
model.eval()
|
|
|
|
with torch.no_grad():
|
|
outputs = model(**self._prepare_for_class(inputs_dict, model_class))
|
|
|
|
hidden_states = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states
|
|
|
|
expected_num_layers = getattr(
|
|
self.model_tester, "expected_num_hidden_layers", self.model_tester.num_hidden_layers + 1
|
|
)
|
|
self.assertEqual(len(hidden_states), expected_num_layers)
|
|
|
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
|
|
|
|
for model_class in self.all_model_classes:
|
|
inputs_dict["output_hidden_states"] = True
|
|
check_hidden_states_output(inputs_dict, config, model_class)
|
|
|
|
# check that output_hidden_states also work using config
|
|
del inputs_dict["output_hidden_states"]
|
|
config.output_hidden_states = True
|
|
|
|
check_hidden_states_output(inputs_dict, config, model_class)
|
|
|
|
@unittest.skip(reason="EoMT does not use inputs_embeds")
|
|
def test_inputs_embeds(self):
|
|
pass
|
|
|
|
@unittest.skip(reason="EoMT does not have a get_input_embeddings method")
|
|
def test_model_get_set_embeddings(self):
|
|
pass
|
|
|
|
@unittest.skip(reason="EoMT is not a generative model")
|
|
def test_generate_without_input_ids(self):
|
|
pass
|
|
|
|
@unittest.skip(reason="EoMT does not use token embeddings")
|
|
def test_resize_tokens_embeddings(self):
|
|
pass
|
|
|
|
def test_training(self):
|
|
if not self.model_tester.is_training:
|
|
self.skipTest(reason="ModelTester is not configured to run training tests")
|
|
|
|
for model_class in self.all_model_classes:
|
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_training()
|
|
config.return_dict = True
|
|
|
|
model = model_class(config)
|
|
model.to(torch_device)
|
|
model.train()
|
|
inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
|
|
loss = model(**inputs).loss
|
|
loss.backward()
|
|
|
|
def test_initialization(self):
|
|
# Apart from the below params, all other parameters are initialized using kaiming uniform.
|
|
non_uniform_init_parms = [
|
|
"layernorm.bias",
|
|
"layernorm.weight",
|
|
"norm1.bias",
|
|
"norm1.weight",
|
|
"norm2.bias",
|
|
"norm2.weight",
|
|
"layer_scale1.lambda1",
|
|
"layer_scale2.lambda1",
|
|
"register_tokens",
|
|
"cls_token",
|
|
]
|
|
|
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
|
|
|
|
configs_no_init = _config_zero_init(config)
|
|
for model_class in self.all_model_classes:
|
|
model = model_class(config=configs_no_init)
|
|
for name, param in model.named_parameters():
|
|
if param.requires_grad:
|
|
if any(x in name for x in non_uniform_init_parms):
|
|
self.assertIn(
|
|
((param.data.mean() * 1e9).round() / 1e9).item(),
|
|
[0.0, 1.0],
|
|
msg=f"Parameter {name} of model {model_class} seems not properly initialized",
|
|
)
|
|
else:
|
|
self.assertTrue(
|
|
-1.0 <= ((param.data.mean() * 1e9).round() / 1e9).item() <= 1.0,
|
|
msg=f"Parameter {name} of model {model_class} seems not properly initialized",
|
|
)
|
|
|
|
|
|
@require_torch
|
|
class EomtForUniversalSegmentationIntegrationTest(unittest.TestCase):
|
|
def setUp(self):
|
|
self.model_id = "tue-mps/coco_panoptic_eomt_large_640"
|
|
|
|
@slow
|
|
def test_inference(self):
|
|
model = EomtForUniversalSegmentation.from_pretrained(self.model_id, device_map="auto")
|
|
processor = AutoImageProcessor.from_pretrained(self.model_id)
|
|
|
|
image = Image.open(requests.get("http://images.cocodataset.org/val2017/000000039769.jpg", stream=True).raw)
|
|
|
|
inputs = processor(images=image, return_tensors="pt").to(model.device)
|
|
|
|
with torch.inference_mode():
|
|
outputs = model(**inputs)
|
|
|
|
self.assertTrue(outputs.class_queries_logits.shape == (1, 200, 134))
|
|
self.assertTrue(outputs.masks_queries_logits.shape == (1, 200, 160, 160))
|
|
|
|
# fmt: off
|
|
EXPECTED_SLICE = torch.tensor([
|
|
[ 13.2540, 8.9279, 8.6631, 12.3760, 10.1429],
|
|
[ -3.4815, -36.4630, -45.5604, -46.8404, -37.5099],
|
|
[ -6.8689, -44.4206, -62.7591, -59.2928, -47.7035],
|
|
[ -2.9380, -42.0659, -57.4382, -55.1537, -43.5142],
|
|
[ -8.4387, -38.5275, -53.1383, -47.0064, -38.9667],
|
|
]).to(model.device)
|
|
# fmt: on
|
|
|
|
output_slice = outputs.masks_queries_logits[0, 0, :5, :5]
|
|
torch.testing.assert_close(output_slice, EXPECTED_SLICE, rtol=1e-2, atol=1e-2)
|
|
|
|
# fmt: off
|
|
EXPECTED_SLICE = torch.tensor([
|
|
[-0.6977, -6.4907, -4.1178, -6.5554, -6.6529],
|
|
[-0.3650, -6.6560, -4.0143, -6.5776, -6.5879],
|
|
[-0.8820, -6.7175, -3.5334, -6.8569, -6.2415],
|
|
[ 0.4502, -5.3911, -3.0232, -5.9411, -6.3243],
|
|
[ 0.3157, -5.6321, -2.6716, -5.5740, -5.5607],
|
|
]).to(model.device)
|
|
# fmt: on
|
|
|
|
output_slice = outputs.class_queries_logits[0, :5, :5]
|
|
torch.testing.assert_close(output_slice, EXPECTED_SLICE, rtol=1e-2, atol=1e-2)
|
|
|
|
@require_torch_accelerator
|
|
@require_torch_fp16
|
|
@slow
|
|
def test_inference_fp16(self):
|
|
model = EomtForUniversalSegmentation.from_pretrained(
|
|
self.model_id, torch_dtype=torch.float16, device_map="auto"
|
|
)
|
|
processor = AutoImageProcessor.from_pretrained(self.model_id)
|
|
|
|
image = Image.open(requests.get("http://images.cocodataset.org/val2017/000000039769.jpg", stream=True).raw)
|
|
|
|
inputs = processor(images=image, return_tensors="pt").to(model.device)
|
|
|
|
with torch.inference_mode():
|
|
outputs = model(**inputs)
|
|
|
|
self.assertTrue(outputs.class_queries_logits.shape == (1, 200, 134))
|
|
self.assertTrue(outputs.masks_queries_logits.shape == (1, 200, 160, 160))
|
|
|
|
@slow
|
|
def test_semantic_segmentation_inference(self):
|
|
model_id = "tue-mps/ade20k_semantic_eomt_large_512"
|
|
model = EomtForUniversalSegmentation.from_pretrained(model_id, device_map="auto")
|
|
processor = AutoImageProcessor.from_pretrained(model_id)
|
|
|
|
image = Image.open(requests.get("http://images.cocodataset.org/val2017/000000039769.jpg", stream=True).raw)
|
|
|
|
inputs = processor(images=image, return_tensors="pt").to(model.device)
|
|
|
|
with torch.inference_mode():
|
|
outputs = model(**inputs)
|
|
|
|
self.assertTrue(outputs.class_queries_logits.shape == (2, 100, 151))
|
|
self.assertTrue(outputs.masks_queries_logits.shape == (2, 100, 128, 128))
|
|
|
|
preds = processor.post_process_semantic_segmentation(outputs, target_sizes=[(image.size[1], image.size[0])])[0]
|
|
|
|
self.assertTrue(preds.shape == (image.size[1], image.size[0]))
|
|
|
|
# fmt: off
|
|
EXPECTED_SLICE = torch.tensor([
|
|
[39, 39, 39, 39, 39, 39, 39, 39, 39, 39],
|
|
[39, 39, 39, 39, 39, 39, 39, 39, 39, 39],
|
|
[39, 39, 39, 39, 39, 39, 39, 39, 39, 39],
|
|
[39, 39, 39, 39, 39, 39, 39, 39, 39, 39],
|
|
[39, 39, 39, 39, 39, 39, 39, 39, 39, 39],
|
|
[39, 39, 39, 39, 39, 39, 39, 39, 39, 39],
|
|
[39, 39, 39, 39, 39, 39, 39, 39, 39, 39],
|
|
[39, 39, 39, 39, 39, 39, 39, 39, 39, 39],
|
|
[39, 39, 39, 39, 39, 39, 39, 39, 39, 39],
|
|
[39, 39, 39, 39, 39, 39, 39, 39, 39, 39]
|
|
], device=model.device)
|
|
# fmt: on
|
|
|
|
output_slice = preds[:10, :10]
|
|
torch.testing.assert_close(output_slice, EXPECTED_SLICE, rtol=1e-2, atol=1e-2)
|
|
|
|
@slow
|
|
def test_panoptic_segmentation_inference(self):
|
|
model = EomtForUniversalSegmentation.from_pretrained(self.model_id, device_map="auto")
|
|
processor = AutoImageProcessor.from_pretrained(self.model_id)
|
|
|
|
image = Image.open(requests.get("http://images.cocodataset.org/val2017/000000039769.jpg", stream=True).raw)
|
|
|
|
inputs = processor(images=image, return_tensors="pt").to(model.device)
|
|
|
|
with torch.inference_mode():
|
|
outputs = model(**inputs)
|
|
|
|
self.assertTrue(outputs.class_queries_logits.shape == (1, 200, 134))
|
|
self.assertTrue(outputs.masks_queries_logits.shape == (1, 200, 160, 160))
|
|
|
|
preds = processor.post_process_panoptic_segmentation(outputs, target_sizes=[(image.size[1], image.size[0])])[0]
|
|
segmentation, segments_info = preds["segmentation"], preds["segments_info"]
|
|
|
|
# fmt: off
|
|
EXPECTED_SLICE = torch.tensor([
|
|
[-1, -1, -1, -1, -1, -1, -1, -1, -1, -1],
|
|
[-1, -1, -1, -1, -1, -1, -1, -1, -1, -1],
|
|
[-1, -1, -1, -1, -1, -1, -1, -1, -1, -1],
|
|
[-1, -1, -1, -1, -1, 2, 2, 2, 2, 2],
|
|
[-1, -1, -1, 2, 2, 2, 2, 2, 2, 2],
|
|
[ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2],
|
|
[ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2],
|
|
[ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2],
|
|
[ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2],
|
|
[ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2]
|
|
], device=model.device)
|
|
|
|
EXPECTED_SEGMENTS_INFO = [
|
|
{"id": 0, "label_id": 15, "score": 0.99935},
|
|
{"id": 1, "label_id": 15, "score": 0.998688},
|
|
{"id": 2, "label_id": 57, "score": 0.954325},
|
|
{"id": 3, "label_id": 65, "score": 0.997285},
|
|
{"id": 4, "label_id": 65, "score": 0.99711}
|
|
]
|
|
# fmt: on
|
|
|
|
output_slice = segmentation[:10, :10]
|
|
torch.testing.assert_close(output_slice, EXPECTED_SLICE, rtol=1e-2, atol=1e-2)
|
|
for actual, expected in zip(segments_info, EXPECTED_SEGMENTS_INFO):
|
|
self.assertEqual(actual["id"], expected["id"])
|
|
self.assertEqual(actual["label_id"], expected["label_id"])
|
|
self.assertAlmostEqual(actual["score"], expected["score"], delta=1e-3)
|
|
|
|
@slow
|
|
def test_instance_segmentation_inference(self):
|
|
model_id = "tue-mps/coco_instance_eomt_large_640"
|
|
model = EomtForUniversalSegmentation.from_pretrained(model_id, device_map="auto")
|
|
processor = AutoImageProcessor.from_pretrained(model_id)
|
|
|
|
image = Image.open(requests.get("http://images.cocodataset.org/val2017/000000039769.jpg", stream=True).raw)
|
|
|
|
inputs = processor(images=image, return_tensors="pt").to(model.device)
|
|
|
|
with torch.inference_mode():
|
|
outputs = model(**inputs)
|
|
|
|
self.assertTrue(outputs.class_queries_logits.shape == (1, 200, 81))
|
|
self.assertTrue(outputs.masks_queries_logits.shape == (1, 200, 160, 160))
|
|
|
|
preds = processor.post_process_instance_segmentation(outputs, target_sizes=[(image.size[1], image.size[0])])[0]
|
|
segmentation, segments_info = preds["segmentation"], preds["segments_info"]
|
|
|
|
# fmt: off
|
|
EXPECTED_SLICE = torch.tensor([
|
|
[-1., -1., -1., -1., -1., -1., -1., -1., -1., -1.],
|
|
[-1., -1., -1., -1., -1., -1., -1., -1., -1., -1.],
|
|
[-1., -1., -1., -1., -1., -1., -1., -1., -1., -1.],
|
|
[-1., -1., -1., 0., 0., 1., 1., 1., 1., 1.],
|
|
[ 0., 0., 1., 1., 1., 1., 1., 1., 1., 1.],
|
|
[ 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.],
|
|
[ 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.],
|
|
[ 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.],
|
|
[ 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.],
|
|
[ 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.]
|
|
], device=model.device)
|
|
|
|
EXPECTED_SEGMENTS_INFO = [
|
|
{'id': 0, 'label_id': 57, 'score': 0.871247},
|
|
{'id': 1, 'label_id': 57, 'score': 0.821225},
|
|
{'id': 2, 'label_id': 15, 'score': 0.976252},
|
|
{'id': 3, 'label_id': 65, 'score': 0.972960},
|
|
{'id': 4, 'label_id': 65, 'score': 0.981109},
|
|
{'id': 5, 'label_id': 15, 'score': 0.972689}
|
|
]
|
|
# fmt: on
|
|
|
|
output_slice = segmentation[:10, :10]
|
|
torch.testing.assert_close(output_slice, EXPECTED_SLICE, rtol=1e-2, atol=1e-2)
|
|
for actual, expected in zip(segments_info, EXPECTED_SEGMENTS_INFO):
|
|
self.assertEqual(actual["id"], expected["id"])
|
|
self.assertEqual(actual["label_id"], expected["label_id"])
|
|
self.assertAlmostEqual(actual["score"], expected["score"], delta=1e-3)
|
|
|
|
@slow
|
|
def test_segmentation_pipeline(self):
|
|
image = Image.open(requests.get("http://images.cocodataset.org/val2017/000000039769.jpg", stream=True).raw)
|
|
|
|
pipe = pipeline(model=self.model_id, subtask="panoptic", device=torch_device)
|
|
output = pipe(image)
|
|
|
|
EXPECTED_OUTPUT_LABELS = ["cat", "cat", "couch", "remote", "remote"]
|
|
|
|
output_labels = [segment["label"] for segment in output]
|
|
self.assertEqual(output_labels, EXPECTED_OUTPUT_LABELS)
|