transformers/tests/models/dpt/test_modeling_dpt_auto_backbone.py
Yih-Dar 37a239ca50
Update expected values (after switching to A10) - part 3 (#39179)
* fix

* fix

* fix

* fix

* fix

* fix

* fix

* fix

* fix

* fix

* fix

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2025-07-02 22:48:30 +02:00

347 lines
13 KiB
Python

# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Testing suite for the PyTorch DPT model."""
import unittest
from transformers import Dinov2Config, DPTConfig
from transformers.file_utils import is_torch_available, is_vision_available
from transformers.testing_utils import Expectations, require_torch, require_vision, slow, torch_device
from transformers.utils.import_utils import get_torch_major_and_minor_version
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import DPTForDepthEstimation
from transformers.models.auto.modeling_auto import MODEL_MAPPING_NAMES
if is_vision_available():
from PIL import Image
from transformers import DPTImageProcessor
class DPTModelTester:
def __init__(
self,
parent,
batch_size=2,
num_channels=3,
image_size=32,
patch_size=16,
use_labels=True,
num_labels=3,
is_training=True,
hidden_size=4,
num_hidden_layers=2,
num_attention_heads=2,
intermediate_size=8,
out_features=["stage1", "stage2"],
apply_layernorm=False,
reshape_hidden_states=False,
neck_hidden_sizes=[2, 2],
fusion_hidden_size=6,
):
self.parent = parent
self.batch_size = batch_size
self.num_channels = num_channels
self.image_size = image_size
self.patch_size = patch_size
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.intermediate_size = intermediate_size
self.out_features = out_features
self.apply_layernorm = apply_layernorm
self.reshape_hidden_states = reshape_hidden_states
self.use_labels = use_labels
self.num_labels = num_labels
self.is_training = is_training
self.neck_hidden_sizes = neck_hidden_sizes
self.fusion_hidden_size = fusion_hidden_size
# DPT's sequence length
self.seq_length = (self.image_size // self.patch_size) ** 2 + 1
def prepare_config_and_inputs(self):
pixel_values = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size])
labels = None
if self.use_labels:
labels = ids_tensor([self.batch_size, self.image_size, self.image_size], self.num_labels)
config = self.get_config()
return config, pixel_values, labels
def get_config(self):
return DPTConfig(
backbone_config=self.get_backbone_config(),
backbone=None,
neck_hidden_sizes=self.neck_hidden_sizes,
fusion_hidden_size=self.fusion_hidden_size,
)
def get_backbone_config(self):
return Dinov2Config(
image_size=self.image_size,
patch_size=self.patch_size,
num_channels=self.num_channels,
hidden_size=self.hidden_size,
num_hidden_layers=self.num_hidden_layers,
num_attention_heads=self.num_attention_heads,
intermediate_size=self.intermediate_size,
is_training=self.is_training,
out_features=self.out_features,
reshape_hidden_states=self.reshape_hidden_states,
)
def create_and_check_for_depth_estimation(self, config, pixel_values, labels):
config.num_labels = self.num_labels
model = DPTForDepthEstimation(config)
model.to(torch_device)
model.eval()
result = model(pixel_values)
self.parent.assertEqual(result.predicted_depth.shape, (self.batch_size, self.image_size, self.image_size))
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
config, pixel_values, labels = config_and_inputs
inputs_dict = {"pixel_values": pixel_values}
return config, inputs_dict
@require_torch
class DPTModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase):
"""
Here we also overwrite some of the tests of test_modeling_common.py, as DPT does not use input_ids, inputs_embeds,
attention_mask and seq_length.
"""
all_model_classes = (DPTForDepthEstimation,) if is_torch_available() else ()
pipeline_model_mapping = {"depth-estimation": DPTForDepthEstimation} if is_torch_available() else {}
test_pruning = False
test_resize_embeddings = False
test_head_masking = False
test_torch_exportable = True
test_torch_exportable_strictly = not get_torch_major_and_minor_version() == "2.7"
def setUp(self):
self.model_tester = DPTModelTester(self)
self.config_tester = ConfigTester(self, config_class=DPTConfig, has_text_modality=False, hidden_size=37)
def test_config(self):
self.config_tester.run_common_tests()
@unittest.skip(reason="DPT with AutoBackbone does not have a base model and hence no input_embeddings")
def test_inputs_embeds(self):
pass
def test_for_depth_estimation(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_depth_estimation(*config_and_inputs)
def test_training(self):
for model_class in self.all_model_classes:
if model_class.__name__ == "DPTForDepthEstimation":
continue
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
config.return_dict = True
if model_class.__name__ in MODEL_MAPPING_NAMES.values():
continue
model = model_class(config)
model.to(torch_device)
model.train()
inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
loss = model(**inputs).loss
loss.backward()
def test_training_gradient_checkpointing(self):
for model_class in self.all_model_classes:
if model_class.__name__ == "DPTForDepthEstimation":
continue
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
config.use_cache = False
config.return_dict = True
if model_class.__name__ in MODEL_MAPPING_NAMES.values() or not model_class.supports_gradient_checkpointing:
continue
model = model_class(config)
model.to(torch_device)
model.gradient_checkpointing_enable()
model.train()
inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
loss = model(**inputs).loss
loss.backward()
def test_initialization(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
configs_no_init = _config_zero_init(config)
for model_class in self.all_model_classes:
model = model_class(config=configs_no_init)
# Skip the check for the backbone
backbone_params = []
for name, module in model.named_modules():
if module.__class__.__name__ == "DPTViTHybridEmbeddings":
backbone_params = [f"{name}.{key}" for key in module.state_dict().keys()]
break
for name, param in model.named_parameters():
if param.requires_grad:
if name in backbone_params:
continue
self.assertIn(
((param.data.mean() * 1e9).round() / 1e9).item(),
[0.0, 1.0],
msg=f"Parameter {name} of model {model_class} seems not properly initialized",
)
@unittest.skip(reason="DPT with AutoBackbone does not have a base model and hence no input_embeddings")
def test_model_get_set_embeddings(self):
pass
@unittest.skip(
reason="This architecture seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124"
)
def test_training_gradient_checkpointing_use_reentrant(self):
pass
@unittest.skip(
reason="This architecture seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124"
)
def test_training_gradient_checkpointing_use_reentrant_false(self):
pass
@slow
def test_model_from_pretrained(self):
model_name = "Intel/dpt-large"
model = DPTForDepthEstimation.from_pretrained(model_name)
self.assertIsNotNone(model)
# We will verify our results on an image of cute cats
def prepare_img():
image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png")
return image
@require_torch
@require_vision
@slow
class DPTModelIntegrationTest(unittest.TestCase):
def test_inference_depth_estimation_dinov2(self):
image_processor = DPTImageProcessor.from_pretrained("facebook/dpt-dinov2-small-kitti")
model = DPTForDepthEstimation.from_pretrained("facebook/dpt-dinov2-small-kitti").to(torch_device)
image = prepare_img()
inputs = image_processor(images=image, return_tensors="pt").to(torch_device)
# forward pass
with torch.no_grad():
outputs = model(**inputs)
predicted_depth = outputs.predicted_depth
# verify the predicted depth
expected_shape = torch.Size((1, 576, 736))
self.assertEqual(predicted_depth.shape, expected_shape)
expectations = Expectations(
{
(None, None): [[6.0336, 7.1502, 7.4130], [6.8977, 7.2383, 7.2268], [7.9180, 8.0525, 8.0134]],
("cuda", 8): [[6.0350, 7.1518, 7.4144], [6.8992, 7.2396, 7.2280], [7.9194, 8.0538, 8.0145]],
}
)
expected_slice = torch.tensor(expectations.get_expectation()).to(torch_device)
torch.testing.assert_close(outputs.predicted_depth[0, :3, :3], expected_slice, rtol=2e-4, atol=2e-4)
def test_inference_depth_estimation_beit(self):
image_processor = DPTImageProcessor.from_pretrained("Intel/dpt-beit-base-384")
model = DPTForDepthEstimation.from_pretrained("Intel/dpt-beit-base-384").to(torch_device)
image = prepare_img()
inputs = image_processor(images=image, return_tensors="pt").to(torch_device)
# forward pass
with torch.no_grad():
outputs = model(**inputs)
predicted_depth = outputs.predicted_depth
# verify the predicted depth
expected_shape = torch.Size((1, 384, 384))
self.assertEqual(predicted_depth.shape, expected_shape)
expectations = Expectations(
{
(None, None): [
[2669.7061, 2663.7144, 2674.9399],
[2633.9326, 2650.9092, 2665.4270],
[2621.8271, 2632.0129, 2637.2290],
],
("cuda", 8): [
[2669.4292, 2663.4121, 2674.6233],
[2633.7400, 2650.7026, 2665.2085],
[2621.6572, 2631.8452, 2637.0525],
],
}
)
expected_slice = torch.tensor(expectations.get_expectation()).to(torch_device)
torch.testing.assert_close(outputs.predicted_depth[0, :3, :3], expected_slice, rtol=2e-4, atol=2e-4)
def test_inference_depth_estimation_swinv2(self):
image_processor = DPTImageProcessor.from_pretrained("Intel/dpt-swinv2-tiny-256")
model = DPTForDepthEstimation.from_pretrained("Intel/dpt-swinv2-tiny-256").to(torch_device)
image = prepare_img()
inputs = image_processor(images=image, return_tensors="pt").to(torch_device)
# forward pass
with torch.no_grad():
outputs = model(**inputs)
predicted_depth = outputs.predicted_depth
# verify the predicted depth
expected_shape = torch.Size((1, 256, 256))
self.assertEqual(predicted_depth.shape, expected_shape)
expectations = Expectations(
{
(None, None): [
[1032.7719, 1025.1886, 1030.2661],
[1023.7619, 1021.0075, 1024.9121],
[1022.5667, 1018.8522, 1021.4145],
],
("cuda", 8): [
[1032.7170, 1025.0629, 1030.1941],
[1023.7309, 1020.9786, 1024.8594],
[1022.5233, 1018.8235, 1021.3312],
],
}
)
expected_slice = torch.tensor(expectations.get_expectation()).to(torch_device)
torch.testing.assert_close(outputs.predicted_depth[0, :3, :3], expected_slice, rtol=2e-4, atol=2e-4)