mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-04 05:10:06 +06:00
86 lines
3.2 KiB
Python
86 lines
3.2 KiB
Python
from typing import ClassVar, List, Optional, Union
|
|
|
|
import torch
|
|
import torch.utils.checkpoint
|
|
from torch import nn
|
|
|
|
from transformers.models.paligemma.modeling_paligemma import PaliGemmaForConditionalGeneration
|
|
|
|
from ...cache_utils import Cache
|
|
|
|
|
|
class NewTaskModelForNewTask(PaliGemmaForConditionalGeneration):
|
|
main_input_name: ClassVar[str] = "doc_input_ids" # transformers-related
|
|
|
|
def __init__(self, config):
|
|
super().__init__(config=config)
|
|
|
|
self.embedding_dim = self.config.embedding_dim
|
|
self.custom_text_proj = nn.Linear(self.config.text_config.hidden_size, self.embedding_dim)
|
|
|
|
if self.language_model._tied_weights_keys is not None:
|
|
self._tied_weights_keys = [f"model.language_model.{k}" for k in self.language_model._tied_weights_keys]
|
|
|
|
self.post_init()
|
|
|
|
def forward(
|
|
self,
|
|
input_ids: torch.LongTensor = None,
|
|
pixel_values: torch.FloatTensor = None,
|
|
attention_mask: Optional[torch.Tensor] = None,
|
|
position_ids: Optional[torch.LongTensor] = None,
|
|
past_key_values: Optional[Union[List[torch.FloatTensor], Cache]] = None,
|
|
token_type_ids: Optional[torch.LongTensor] = None,
|
|
cache_position: Optional[torch.LongTensor] = None,
|
|
inputs_embeds: Optional[torch.FloatTensor] = None,
|
|
labels: Optional[torch.LongTensor] = None,
|
|
use_cache: Optional[bool] = None,
|
|
output_attentions: Optional[bool] = None,
|
|
output_hidden_states: Optional[bool] = None,
|
|
return_dict: Optional[bool] = None,
|
|
num_logits_to_keep: int = 0,
|
|
):
|
|
r"""
|
|
Returns:
|
|
"""
|
|
vlm_outputs = super().forward(
|
|
input_ids=input_ids,
|
|
pixel_values=pixel_values,
|
|
attention_mask=attention_mask,
|
|
position_ids=position_ids,
|
|
past_key_values=past_key_values,
|
|
token_type_ids=token_type_ids,
|
|
cache_position=cache_position,
|
|
inputs_embeds=inputs_embeds,
|
|
labels=labels,
|
|
use_cache=use_cache,
|
|
output_attentions=output_attentions,
|
|
output_hidden_states=True,
|
|
return_dict=True,
|
|
num_logits_to_keep=num_logits_to_keep,
|
|
)
|
|
last_hidden_states = vlm_outputs.hidden_states[-1] # (batch_size, sequence_length, hidden_size)
|
|
proj = self.custom_text_proj(last_hidden_states) # (batch_size, sequence_length, dim)
|
|
|
|
# L2 normalization
|
|
embeddings = proj / proj.norm(dim=-1, keepdim=True) # (batch_size, sequence_length, dim)
|
|
|
|
embeddings = embeddings * attention_mask.unsqueeze(-1) # (batch_size, sequence_length, dim)
|
|
|
|
return (embeddings,) + vlm_outputs
|
|
|
|
def resize_token_embeddings(
|
|
self,
|
|
new_num_tokens: Optional[int] = None,
|
|
pad_to_multiple_of=None,
|
|
mean_resizing=True
|
|
) -> nn.Embedding:
|
|
model_embeds = self.language_model.resize_token_embeddings(new_num_tokens, pad_to_multiple_of, mean_resizing)
|
|
|
|
# Update vocab size
|
|
self.config.text_config.vocab_size = model_embeds.num_embeddings
|
|
self.config.vocab_size = model_embeds.num_embeddings
|
|
self.vocab_size = model_embeds.num_embeddings
|
|
|
|
return model_embeds
|