transformers/tests/pipelines/test_pipelines_zero_shot_image_classification.py
Matt 3b44d2f042
Image pipelines spec compliance (#33899)
* Update many similar visual pipelines

* Add input tests

* Add ImageToText as well

* Add output tests

* Add output tests

* Add output tests

* OutputElement -> Output

* Correctly test elements

* make fixup

* fix typo in the task list

* Fix VQA testing

* Add copyright to image_classification.py

* Revert changes to VQA pipeline because outputs have differences - will move to another PR

* make fixup

* Remove deprecation warnings
2024-10-08 13:34:28 +01:00

331 lines
12 KiB
Python

# Copyright 2021 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
from huggingface_hub import ZeroShotImageClassificationOutputElement
from transformers import is_vision_available
from transformers.pipelines import pipeline
from transformers.testing_utils import (
compare_pipeline_output_to_hub_spec,
is_pipeline_test,
nested_simplify,
require_tf,
require_torch,
require_vision,
slow,
)
from .test_pipelines_common import ANY
if is_vision_available():
from PIL import Image
else:
class Image:
@staticmethod
def open(*args, **kwargs):
pass
@is_pipeline_test
@require_vision
class ZeroShotImageClassificationPipelineTests(unittest.TestCase):
# Deactivating auto tests since we don't have a good MODEL_FOR_XX mapping,
# and only CLIP would be there for now.
# model_mapping = {CLIPConfig: CLIPModel}
# def get_test_pipeline(self, model, tokenizer, processor):
# if tokenizer is None:
# # Side effect of no Fast Tokenizer class for these model, so skipping
# # But the slow tokenizer test should still run as they're quite small
# self.skipTest(reason="No tokenizer available")
# return
# # return None, None
# image_classifier = ZeroShotImageClassificationPipeline(
# model=model, tokenizer=tokenizer, feature_extractor=processor
# )
# # test with a raw waveform
# image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png")
# image2 = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png")
# return image_classifier, [image, image2]
# def run_pipeline_test(self, pipe, examples):
# image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png")
# outputs = pipe(image, candidate_labels=["A", "B"])
# self.assertEqual(outputs, {"text": ANY(str)})
# # Batching
# outputs = pipe([image] * 3, batch_size=2, candidate_labels=["A", "B"])
@require_torch
def test_small_model_pt(self, torch_dtype="float32"):
image_classifier = pipeline(
model="hf-internal-testing/tiny-random-clip-zero-shot-image-classification", torch_dtype=torch_dtype
)
image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png")
output = image_classifier(image, candidate_labels=["a", "b", "c"])
# The floating scores are so close, we enter floating error approximation and the order is not guaranteed across
# python and torch versions.
self.assertIn(
nested_simplify(output),
[
[{"score": 0.333, "label": "a"}, {"score": 0.333, "label": "b"}, {"score": 0.333, "label": "c"}],
[{"score": 0.333, "label": "a"}, {"score": 0.333, "label": "c"}, {"score": 0.333, "label": "b"}],
[{"score": 0.333, "label": "b"}, {"score": 0.333, "label": "a"}, {"score": 0.333, "label": "c"}],
],
)
output = image_classifier([image] * 5, candidate_labels=["A", "B", "C"], batch_size=2)
self.assertEqual(
nested_simplify(output),
# Pipeline outputs are supposed to be deterministic and
# So we could in theory have real values "A", "B", "C" instead
# of ANY(str).
# However it seems that in this particular case, the floating
# scores are so close, we enter floating error approximation
# and the order is not guaranteed anymore with batching.
[
[
{"score": 0.333, "label": ANY(str)},
{"score": 0.333, "label": ANY(str)},
{"score": 0.333, "label": ANY(str)},
],
[
{"score": 0.333, "label": ANY(str)},
{"score": 0.333, "label": ANY(str)},
{"score": 0.333, "label": ANY(str)},
],
[
{"score": 0.333, "label": ANY(str)},
{"score": 0.333, "label": ANY(str)},
{"score": 0.333, "label": ANY(str)},
],
[
{"score": 0.333, "label": ANY(str)},
{"score": 0.333, "label": ANY(str)},
{"score": 0.333, "label": ANY(str)},
],
[
{"score": 0.333, "label": ANY(str)},
{"score": 0.333, "label": ANY(str)},
{"score": 0.333, "label": ANY(str)},
],
],
)
for single_output in output:
compare_pipeline_output_to_hub_spec(single_output, ZeroShotImageClassificationOutputElement)
@require_torch
def test_small_model_pt_fp16(self):
self.test_small_model_pt(torch_dtype="float16")
@require_tf
def test_small_model_tf(self):
image_classifier = pipeline(
model="hf-internal-testing/tiny-random-clip-zero-shot-image-classification", framework="tf"
)
image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png")
output = image_classifier(image, candidate_labels=["a", "b", "c"])
self.assertEqual(
nested_simplify(output),
[{"score": 0.333, "label": "a"}, {"score": 0.333, "label": "b"}, {"score": 0.333, "label": "c"}],
)
output = image_classifier([image] * 5, candidate_labels=["A", "B", "C"], batch_size=2)
self.assertEqual(
nested_simplify(output),
# Pipeline outputs are supposed to be deterministic and
# So we could in theory have real values "A", "B", "C" instead
# of ANY(str).
# However it seems that in this particular case, the floating
# scores are so close, we enter floating error approximation
# and the order is not guaranteed anymore with batching.
[
[
{"score": 0.333, "label": ANY(str)},
{"score": 0.333, "label": ANY(str)},
{"score": 0.333, "label": ANY(str)},
],
[
{"score": 0.333, "label": ANY(str)},
{"score": 0.333, "label": ANY(str)},
{"score": 0.333, "label": ANY(str)},
],
[
{"score": 0.333, "label": ANY(str)},
{"score": 0.333, "label": ANY(str)},
{"score": 0.333, "label": ANY(str)},
],
[
{"score": 0.333, "label": ANY(str)},
{"score": 0.333, "label": ANY(str)},
{"score": 0.333, "label": ANY(str)},
],
[
{"score": 0.333, "label": ANY(str)},
{"score": 0.333, "label": ANY(str)},
{"score": 0.333, "label": ANY(str)},
],
],
)
@slow
@require_torch
def test_large_model_pt(self):
image_classifier = pipeline(
task="zero-shot-image-classification",
model="openai/clip-vit-base-patch32",
)
# This is an image of 2 cats with remotes and no planes
image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png")
output = image_classifier(image, candidate_labels=["cat", "plane", "remote"])
self.assertEqual(
nested_simplify(output),
[
{"score": 0.511, "label": "remote"},
{"score": 0.485, "label": "cat"},
{"score": 0.004, "label": "plane"},
],
)
output = image_classifier([image] * 5, candidate_labels=["cat", "plane", "remote"], batch_size=2)
self.assertEqual(
nested_simplify(output),
[
[
{"score": 0.511, "label": "remote"},
{"score": 0.485, "label": "cat"},
{"score": 0.004, "label": "plane"},
],
]
* 5,
)
@slow
@require_tf
def test_large_model_tf(self):
image_classifier = pipeline(
task="zero-shot-image-classification", model="openai/clip-vit-base-patch32", framework="tf"
)
# This is an image of 2 cats with remotes and no planes
image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png")
output = image_classifier(image, candidate_labels=["cat", "plane", "remote"])
self.assertEqual(
nested_simplify(output),
[
{"score": 0.511, "label": "remote"},
{"score": 0.485, "label": "cat"},
{"score": 0.004, "label": "plane"},
],
)
output = image_classifier([image] * 5, candidate_labels=["cat", "plane", "remote"], batch_size=2)
self.assertEqual(
nested_simplify(output),
[
[
{"score": 0.511, "label": "remote"},
{"score": 0.485, "label": "cat"},
{"score": 0.004, "label": "plane"},
],
]
* 5,
)
@slow
@require_torch
def test_siglip_model_pt(self):
image_classifier = pipeline(
task="zero-shot-image-classification",
model="google/siglip-base-patch16-224",
)
# This is an image of 2 cats with remotes and no planes
image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png")
output = image_classifier(image, candidate_labels=["2 cats", "a plane", "a remote"])
self.assertEqual(
nested_simplify(output),
[
{"score": 0.198, "label": "2 cats"},
{"score": 0.0, "label": "a remote"},
{"score": 0.0, "label": "a plane"},
],
)
output = image_classifier([image] * 5, candidate_labels=["2 cats", "a plane", "a remote"], batch_size=2)
self.assertEqual(
nested_simplify(output),
[
[
{"score": 0.198, "label": "2 cats"},
{"score": 0.0, "label": "a remote"},
{"score": 0.0, "label": "a plane"},
]
]
* 5,
)
@slow
@require_torch
def test_blip2_model_pt(self):
image_classifier = pipeline(
task="zero-shot-image-classification",
model="Salesforce/blip2-itm-vit-g",
)
# This is an image of 2 cats with remotes and no planes
image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png")
output = image_classifier(
image,
candidate_labels=["2 cats", "a plane", "a remote"],
tokenizer_kwargs={"return_token_type_ids": False},
)
self.assertEqual(
nested_simplify(output),
[
{"score": 0.369, "label": "2 cats"},
{"score": 0.333, "label": "a remote"},
{"score": 0.297, "label": "a plane"},
],
)
output = image_classifier(
[image] * 5,
candidate_labels=["2 cats", "a plane", "a remote"],
batch_size=2,
tokenizer_kwargs={"return_token_type_ids": False},
)
self.assertEqual(
nested_simplify(output),
[
[
{"score": 0.369, "label": "2 cats"},
{"score": 0.333, "label": "a remote"},
{"score": 0.297, "label": "a plane"},
]
]
* 5,
)