transformers/tests/utils.py
Julien Chaumond 4c06893610
Fix nn.DataParallel compatibility in PyTorch 1.5 (#4300)
* Test case for #3936

* multigpu tests pass on pytorch 1.4.0

* Fixup

* multigpu tests pass on pytorch 1.5.0

* Update src/transformers/modeling_utils.py

* Update src/transformers/modeling_utils.py

* rename multigpu to require_multigpu

* mode doc
2020-05-18 20:34:50 -04:00

121 lines
3.3 KiB
Python

import os
import unittest
from distutils.util import strtobool
from transformers.file_utils import _tf_available, _torch_available
SMALL_MODEL_IDENTIFIER = "julien-c/bert-xsmall-dummy"
DUMMY_UNKWOWN_IDENTIFIER = "julien-c/dummy-unknown"
# Used to test Auto{Config, Model, Tokenizer} model_type detection.
def parse_flag_from_env(key, default=False):
try:
value = os.environ[key]
except KeyError:
# KEY isn't set, default to `default`.
_value = default
else:
# KEY is set, convert it to True or False.
try:
_value = strtobool(value)
except ValueError:
# More values are supported, but let's keep the message simple.
raise ValueError("If set, {} must be yes or no.".format(key))
return _value
def parse_int_from_env(key, default=None):
try:
value = os.environ[key]
except KeyError:
_value = default
else:
try:
_value = int(value)
except ValueError:
raise ValueError("If set, {} must be a int.".format(key))
return _value
_run_slow_tests = parse_flag_from_env("RUN_SLOW", default=False)
_run_custom_tokenizers = parse_flag_from_env("RUN_CUSTOM_TOKENIZERS", default=False)
_tf_gpu_memory_limit = parse_int_from_env("TF_GPU_MEMORY_LIMIT", default=None)
def slow(test_case):
"""
Decorator marking a test as slow.
Slow tests are skipped by default. Set the RUN_SLOW environment variable
to a truthy value to run them.
"""
if not _run_slow_tests:
test_case = unittest.skip("test is slow")(test_case)
return test_case
def custom_tokenizers(test_case):
"""
Decorator marking a test for a custom tokenizer.
Custom tokenizers require additional dependencies, and are skipped
by default. Set the RUN_CUSTOM_TOKENIZERS environment variable
to a truthy value to run them.
"""
if not _run_custom_tokenizers:
test_case = unittest.skip("test of custom tokenizers")(test_case)
return test_case
def require_torch(test_case):
"""
Decorator marking a test that requires PyTorch.
These tests are skipped when PyTorch isn't installed.
"""
if not _torch_available:
test_case = unittest.skip("test requires PyTorch")(test_case)
return test_case
def require_tf(test_case):
"""
Decorator marking a test that requires TensorFlow.
These tests are skipped when TensorFlow isn't installed.
"""
if not _tf_available:
test_case = unittest.skip("test requires TensorFlow")(test_case)
return test_case
def require_multigpu(test_case):
"""
Decorator marking a test that requires a multi-GPU setup (in PyTorch).
These tests are skipped on a machine without multiple GPUs.
To run *only* the multigpu tests, assuming all test names contain multigpu:
$ pytest -sv ./tests -k "multigpu"
"""
if not _torch_available:
return unittest.skip("test requires PyTorch")(test_case)
import torch
if torch.cuda.device_count() < 2:
return unittest.skip("test requires multiple GPUs")(test_case)
return test_case
if _torch_available:
# Set the USE_CUDA environment variable to select a GPU.
torch_device = "cuda" if parse_flag_from_env("USE_CUDA") else "cpu"
else:
torch_device = None