transformers/tests/test_tokenization_gpt2.py
Thomas Wolf 9aeacb58ba
Adding Fast tokenizers for SentencePiece based tokenizers - Breaking: remove Transfo-XL fast tokenizer (#7141)
* [WIP] SP tokenizers

* fixing tests for T5

* WIP tokenizers

* serialization

* update T5

* WIP T5 tokenization

* slow to fast conversion script

* Refactoring to move tokenzier implementations inside transformers

* Adding gpt - refactoring - quality

* WIP adding several tokenizers to the fast world

* WIP Roberta - moving implementations

* update to dev4 switch file loading to in-memory loading

* Updating and fixing

* advancing on the tokenizers - updating do_lower_case

* style and quality

* moving forward with tokenizers conversion and tests

* MBart, T5

* dumping the fast version of transformer XL

* Adding to autotokenizers + style/quality

* update init and space_between_special_tokens

* style and quality

* bump up tokenizers version

* add protobuf

* fix pickle Bert JP with Mecab

* fix newly added tokenizers

* style and quality

* fix bert japanese

* fix funnel

* limite tokenizer warning to one occurence

* clean up file

* fix new tokenizers

* fast tokenizers deep tests

* WIP adding all the special fast tests on the new fast tokenizers

* quick fix

* adding more fast tokenizers in the fast tests

* all tokenizers in fast version tested

* Adding BertGenerationFast

* bump up setup.py for CI

* remove BertGenerationFast (too early)

* bump up tokenizers version

* Clean old docstrings

* Typo

* Update following Lysandre comments

Co-authored-by: Sylvain Gugger <sylvain.gugger@gmail.com>
2020-10-08 11:32:16 +02:00

128 lines
4.7 KiB
Python

# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import json
import os
import unittest
from transformers.tokenization_gpt2 import VOCAB_FILES_NAMES, GPT2Tokenizer, GPT2TokenizerFast
from .test_tokenization_common import TokenizerTesterMixin
class GPT2TokenizationTest(TokenizerTesterMixin, unittest.TestCase):
tokenizer_class = GPT2Tokenizer
rust_tokenizer_class = GPT2TokenizerFast
test_rust_tokenizer = True
def setUp(self):
super().setUp()
# Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt
vocab = [
"l",
"o",
"w",
"e",
"r",
"s",
"t",
"i",
"d",
"n",
"\u0120",
"\u0120l",
"\u0120n",
"\u0120lo",
"\u0120low",
"er",
"\u0120lowest",
"\u0120newer",
"\u0120wider",
"<unk>",
"<|endoftext|>",
]
vocab_tokens = dict(zip(vocab, range(len(vocab))))
merges = ["#version: 0.2", "\u0120 l", "\u0120l o", "\u0120lo w", "e r", ""]
self.special_tokens_map = {"unk_token": "<unk>"}
self.vocab_file = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["vocab_file"])
self.merges_file = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["merges_file"])
with open(self.vocab_file, "w", encoding="utf-8") as fp:
fp.write(json.dumps(vocab_tokens) + "\n")
with open(self.merges_file, "w", encoding="utf-8") as fp:
fp.write("\n".join(merges))
def get_tokenizer(self, **kwargs):
kwargs.update(self.special_tokens_map)
return GPT2Tokenizer.from_pretrained(self.tmpdirname, **kwargs)
def get_rust_tokenizer(self, **kwargs):
kwargs.update(self.special_tokens_map)
return GPT2TokenizerFast.from_pretrained(self.tmpdirname, **kwargs)
def get_input_output_texts(self, tokenizer):
input_text = "lower newer"
output_text = "lower newer"
return input_text, output_text
def test_full_tokenizer(self):
tokenizer = GPT2Tokenizer(self.vocab_file, self.merges_file, **self.special_tokens_map)
text = "lower newer"
bpe_tokens = ["\u0120low", "er", "\u0120", "n", "e", "w", "er"]
tokens = tokenizer.tokenize(text, add_prefix_space=True)
self.assertListEqual(tokens, bpe_tokens)
input_tokens = tokens + [tokenizer.unk_token]
input_bpe_tokens = [14, 15, 10, 9, 3, 2, 15, 19]
self.assertListEqual(tokenizer.convert_tokens_to_ids(input_tokens), input_bpe_tokens)
def test_rust_and_python_full_tokenizers(self):
if not self.test_rust_tokenizer:
return
tokenizer = self.get_tokenizer()
rust_tokenizer = self.get_rust_tokenizer(add_prefix_space=True)
sequence = "lower newer"
# Testing tokenization
tokens = tokenizer.tokenize(sequence, add_prefix_space=True)
rust_tokens = rust_tokenizer.tokenize(sequence)
self.assertListEqual(tokens, rust_tokens)
# Testing conversion to ids without special tokens
ids = tokenizer.encode(sequence, add_special_tokens=False, add_prefix_space=True)
rust_ids = rust_tokenizer.encode(sequence, add_special_tokens=False)
self.assertListEqual(ids, rust_ids)
# Testing conversion to ids with special tokens
rust_tokenizer = self.get_rust_tokenizer(add_prefix_space=True)
ids = tokenizer.encode(sequence, add_prefix_space=True)
rust_ids = rust_tokenizer.encode(sequence)
self.assertListEqual(ids, rust_ids)
# Testing the unknown token
input_tokens = tokens + [rust_tokenizer.unk_token]
input_bpe_tokens = [14, 15, 10, 9, 3, 2, 15, 19]
self.assertListEqual(rust_tokenizer.convert_tokens_to_ids(input_tokens), input_bpe_tokens)
def test_pretokenized_inputs(self, *args, **kwargs):
# It's very difficult to mix/test pretokenization with byte-level
# And get both GPT2 and Roberta to work at the same time (mostly an issue of adding a space before the string)
pass