mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-05 22:00:09 +06:00

* [WIP] SP tokenizers * fixing tests for T5 * WIP tokenizers * serialization * update T5 * WIP T5 tokenization * slow to fast conversion script * Refactoring to move tokenzier implementations inside transformers * Adding gpt - refactoring - quality * WIP adding several tokenizers to the fast world * WIP Roberta - moving implementations * update to dev4 switch file loading to in-memory loading * Updating and fixing * advancing on the tokenizers - updating do_lower_case * style and quality * moving forward with tokenizers conversion and tests * MBart, T5 * dumping the fast version of transformer XL * Adding to autotokenizers + style/quality * update init and space_between_special_tokens * style and quality * bump up tokenizers version * add protobuf * fix pickle Bert JP with Mecab * fix newly added tokenizers * style and quality * fix bert japanese * fix funnel * limite tokenizer warning to one occurence * clean up file * fix new tokenizers * fast tokenizers deep tests * WIP adding all the special fast tests on the new fast tokenizers * quick fix * adding more fast tokenizers in the fast tests * all tokenizers in fast version tested * Adding BertGenerationFast * bump up setup.py for CI * remove BertGenerationFast (too early) * bump up tokenizers version * Clean old docstrings * Typo * Update following Lysandre comments Co-authored-by: Sylvain Gugger <sylvain.gugger@gmail.com>
102 lines
3.7 KiB
Python
102 lines
3.7 KiB
Python
# coding=utf-8
|
|
# Copyright 2019 Hugging Face inc.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
|
|
import os
|
|
import unittest
|
|
|
|
from transformers.tokenization_albert import AlbertTokenizer, AlbertTokenizerFast
|
|
|
|
from .test_tokenization_common import TokenizerTesterMixin
|
|
|
|
|
|
SAMPLE_VOCAB = os.path.join(os.path.dirname(os.path.abspath(__file__)), "fixtures/spiece.model")
|
|
|
|
|
|
class AlbertTokenizationTest(TokenizerTesterMixin, unittest.TestCase):
|
|
|
|
tokenizer_class = AlbertTokenizer
|
|
rust_tokenizer_class = AlbertTokenizerFast
|
|
test_rust_tokenizer = True
|
|
|
|
def setUp(self):
|
|
super().setUp()
|
|
|
|
# We have a SentencePiece fixture for testing
|
|
tokenizer = AlbertTokenizer(SAMPLE_VOCAB)
|
|
tokenizer.save_pretrained(self.tmpdirname)
|
|
|
|
def get_input_output_texts(self, tokenizer):
|
|
input_text = "this is a test"
|
|
output_text = "this is a test"
|
|
return input_text, output_text
|
|
|
|
def test_rust_and_python_full_tokenizers(self):
|
|
if not self.test_rust_tokenizer:
|
|
return
|
|
|
|
tokenizer = self.get_tokenizer()
|
|
rust_tokenizer = self.get_rust_tokenizer()
|
|
|
|
sequence = "I was born in 92000, and this is falsé."
|
|
|
|
tokens = tokenizer.tokenize(sequence)
|
|
rust_tokens = rust_tokenizer.tokenize(sequence)
|
|
self.assertListEqual(tokens, rust_tokens)
|
|
|
|
ids = tokenizer.encode(sequence, add_special_tokens=False)
|
|
rust_ids = rust_tokenizer.encode(sequence, add_special_tokens=False)
|
|
self.assertListEqual(ids, rust_ids)
|
|
|
|
rust_tokenizer = self.get_rust_tokenizer()
|
|
ids = tokenizer.encode(sequence)
|
|
rust_ids = rust_tokenizer.encode(sequence)
|
|
self.assertListEqual(ids, rust_ids)
|
|
|
|
def test_full_tokenizer(self):
|
|
tokenizer = AlbertTokenizer(SAMPLE_VOCAB, keep_accents=True)
|
|
|
|
tokens = tokenizer.tokenize("This is a test")
|
|
self.assertListEqual(tokens, ["▁this", "▁is", "▁a", "▁test"])
|
|
|
|
self.assertListEqual(tokenizer.convert_tokens_to_ids(tokens), [48, 25, 21, 1289])
|
|
|
|
tokens = tokenizer.tokenize("I was born in 92000, and this is falsé.")
|
|
self.assertListEqual(
|
|
tokens, ["▁i", "▁was", "▁born", "▁in", "▁9", "2000", ",", "▁and", "▁this", "▁is", "▁fal", "s", "é", "."]
|
|
)
|
|
ids = tokenizer.convert_tokens_to_ids(tokens)
|
|
self.assertListEqual(ids, [31, 23, 386, 19, 561, 3050, 15, 17, 48, 25, 8256, 18, 1, 9])
|
|
|
|
back_tokens = tokenizer.convert_ids_to_tokens(ids)
|
|
self.assertListEqual(
|
|
back_tokens,
|
|
["▁i", "▁was", "▁born", "▁in", "▁9", "2000", ",", "▁and", "▁this", "▁is", "▁fal", "s", "<unk>", "."],
|
|
)
|
|
|
|
def test_sequence_builders(self):
|
|
tokenizer = AlbertTokenizer(SAMPLE_VOCAB)
|
|
|
|
text = tokenizer.encode("sequence builders")
|
|
text_2 = tokenizer.encode("multi-sequence build")
|
|
|
|
encoded_sentence = tokenizer.build_inputs_with_special_tokens(text)
|
|
encoded_pair = tokenizer.build_inputs_with_special_tokens(text, text_2)
|
|
|
|
assert encoded_sentence == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id]
|
|
assert encoded_pair == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_2 + [
|
|
tokenizer.sep_token_id
|
|
]
|