transformers/examples/seq2seq/run_eval.py

118 lines
4.4 KiB
Python

import argparse
import json
from pathlib import Path
import torch
from tqdm import tqdm
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
try:
from .utils import calculate_rouge, use_task_specific_params, calculate_bleu_score, trim_batch
except ImportError:
from utils import calculate_rouge, use_task_specific_params, calculate_bleu_score, trim_batch
DEFAULT_DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
def chunks(lst, n):
"""Yield successive n-sized chunks from lst."""
for i in range(0, len(lst), n):
yield lst[i : i + n]
def generate_summaries_or_translations(
examples: list,
out_file: str,
model_name: str,
batch_size: int = 8,
device: str = DEFAULT_DEVICE,
fp16=False,
task="summarization",
decoder_start_token_id=None,
**gen_kwargs,
) -> None:
fout = Path(out_file).open("w", encoding="utf-8")
model_name = str(model_name)
model = AutoModelForSeq2SeqLM.from_pretrained(model_name).to(device)
if fp16:
model = model.half()
if decoder_start_token_id is None:
decoder_start_token_id = gen_kwargs.pop("decoder_start_token_id", None)
tokenizer = AutoTokenizer.from_pretrained(model_name)
# update config with summarization specific params
use_task_specific_params(model, task)
for batch in tqdm(list(chunks(examples, batch_size))):
if "t5" in model_name:
batch = [model.config.prefix + text for text in batch]
batch = tokenizer(batch, return_tensors="pt", truncation=True, padding="max_length").to(device)
input_ids, attention_mask = trim_batch(**batch, pad_token_id=tokenizer.pad_token_id)
summaries = model.generate(
input_ids=input_ids,
attention_mask=attention_mask,
decoder_start_token_id=decoder_start_token_id,
**gen_kwargs,
)
dec = tokenizer.batch_decode(summaries, skip_special_tokens=True, clean_up_tokenization_spaces=False)
for hypothesis in dec:
fout.write(hypothesis + "\n")
fout.flush()
def run_generate():
parser = argparse.ArgumentParser()
parser.add_argument("model_name", type=str, help="like facebook/bart-large-cnn,t5-base, etc.")
parser.add_argument("input_path", type=str, help="like cnn_dm/test.source")
parser.add_argument("save_path", type=str, help="where to save summaries")
parser.add_argument("--reference_path", type=str, required=False, help="like cnn_dm/test_reference_summaries.txt")
parser.add_argument("--score_path", type=str, required=False, help="where to save the rouge score in json format")
parser.add_argument("--device", type=str, required=False, default=DEFAULT_DEVICE, help="cuda, cuda:1, cpu etc.")
parser.add_argument("--task", type=str, default="summarization", help="typically translation or summarization")
parser.add_argument("--bs", type=int, default=8, required=False, help="batch size")
parser.add_argument(
"--decoder_start_token_id",
type=int,
default=None,
required=False,
help="decoder_start_token_id (otherwise will look at config)",
)
parser.add_argument(
"--n_obs", type=int, default=-1, required=False, help="How many observations. Defaults to all."
)
parser.add_argument("--fp16", action="store_true")
args = parser.parse_args()
examples = [" " + x.rstrip() if "t5" in args.model_name else x.rstrip() for x in open(args.input_path).readlines()]
if args.n_obs > 0:
examples = examples[: args.n_obs]
Path(args.save_path).parent.mkdir(exist_ok=True)
generate_summaries_or_translations(
examples,
args.save_path,
args.model_name,
batch_size=args.bs,
device=args.device,
fp16=args.fp16,
task=args.task,
decoder_start_token_id=args.decoder_start_token_id,
)
if args.reference_path is None:
return
# Compute scores
score_fn = calculate_bleu_score if "translation" in args.task else calculate_rouge
output_lns = [x.rstrip() for x in open(args.save_path).readlines()]
reference_lns = [x.rstrip() for x in open(args.reference_path).readlines()][: len(output_lns)]
scores: dict = score_fn(output_lns, reference_lns)
print(scores)
if args.score_path is not None:
json.dump(scores, open(args.score_path, "w+"))
return scores
if __name__ == "__main__":
run_generate()