transformers/tests/pipelines/test_pipelines_visual_question_answering.py
Nicolas Patry 99e7905422
Supporting ImageProcessor in place of FeatureExtractor for pipelines (#20851)
* Fixing the pipeline with image processor.

* Update the slow test.

* Using only the first image processor.

* Include exclusion mecanism for Image processor.

* Do not handle Gitconfig, deemed as a bug.

* Apply suggestions from code review

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* Remove `conversational` changes. They are not supposed to be here.

* Address first row of comments.

* Remove OneFormer modifications.

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
2023-01-25 10:16:31 +01:00

108 lines
4.0 KiB
Python

# Copyright 2022 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
from transformers import MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING, is_vision_available
from transformers.pipelines import pipeline
from transformers.testing_utils import nested_simplify, require_tf, require_torch, require_vision, slow
from .test_pipelines_common import ANY, PipelineTestCaseMeta
if is_vision_available():
from PIL import Image
else:
class Image:
@staticmethod
def open(*args, **kwargs):
pass
@require_torch
@require_vision
class VisualQuestionAnsweringPipelineTests(unittest.TestCase, metaclass=PipelineTestCaseMeta):
model_mapping = MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING
def get_test_pipeline(self, model, tokenizer, feature_extractor, image_processor):
vqa_pipeline = pipeline("visual-question-answering", model="hf-internal-testing/tiny-vilt-random-vqa")
examples = [
{
"image": Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png"),
"question": "How many cats are there?",
},
{
"image": "./tests/fixtures/tests_samples/COCO/000000039769.png",
"question": "How many cats are there?",
},
]
return vqa_pipeline, examples
def run_pipeline_test(self, vqa_pipeline, examples):
outputs = vqa_pipeline(examples, top_k=1)
self.assertEqual(
outputs,
[
[{"score": ANY(float), "answer": ANY(str)}],
[{"score": ANY(float), "answer": ANY(str)}],
],
)
@require_torch
def test_small_model_pt(self):
vqa_pipeline = pipeline("visual-question-answering", model="hf-internal-testing/tiny-vilt-random-vqa")
image = "./tests/fixtures/tests_samples/COCO/000000039769.png"
question = "How many cats are there?"
outputs = vqa_pipeline(image=image, question="How many cats are there?", top_k=2)
self.assertEqual(
outputs, [{"score": ANY(float), "answer": ANY(str)}, {"score": ANY(float), "answer": ANY(str)}]
)
outputs = vqa_pipeline({"image": image, "question": question}, top_k=2)
self.assertEqual(
outputs, [{"score": ANY(float), "answer": ANY(str)}, {"score": ANY(float), "answer": ANY(str)}]
)
@slow
@require_torch
def test_large_model_pt(self):
vqa_pipeline = pipeline("visual-question-answering", model="dandelin/vilt-b32-finetuned-vqa")
image = "./tests/fixtures/tests_samples/COCO/000000039769.png"
question = "How many cats are there?"
outputs = vqa_pipeline(image=image, question=question, top_k=2)
self.assertEqual(
nested_simplify(outputs, decimals=4), [{"score": 0.8799, "answer": "2"}, {"score": 0.296, "answer": "1"}]
)
outputs = vqa_pipeline({"image": image, "question": question}, top_k=2)
self.assertEqual(
nested_simplify(outputs, decimals=4), [{"score": 0.8799, "answer": "2"}, {"score": 0.296, "answer": "1"}]
)
outputs = vqa_pipeline(
[{"image": image, "question": question}, {"image": image, "question": question}], top_k=2
)
self.assertEqual(
nested_simplify(outputs, decimals=4),
[[{"score": 0.8799, "answer": "2"}, {"score": 0.296, "answer": "1"}]] * 2,
)
@require_tf
@unittest.skip("Visual question answering not implemented in TF")
def test_small_model_tf(self):
pass