transformers/tests/models/xglm/test_modeling_flax_xglm.py

219 lines
8.2 KiB
Python

# coding=utf-8
# Copyright 2021 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
from transformers import XGLMConfig, XGLMTokenizer, is_flax_available
from transformers.testing_utils import require_flax, require_sentencepiece, slow
from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask
if is_flax_available():
import jax
import jax.numpy as jnp
import numpy as np
from transformers.models.xglm.modeling_flax_xglm import FlaxXGLMForCausalLM, FlaxXGLMModel
@require_flax
class FlaxXGLMModelTester:
def __init__(
self,
parent,
batch_size=14,
seq_length=7,
is_training=True,
use_input_mask=True,
use_labels=True,
vocab_size=99,
d_model=32,
num_hidden_layers=2,
num_attention_heads=4,
ffn_dim=37,
activation_function="gelu",
activation_dropout=0.1,
attention_dropout=0.1,
max_position_embeddings=512,
initializer_range=0.02,
scope=None,
):
self.parent = parent
self.batch_size = batch_size
self.seq_length = seq_length
self.is_training = is_training
self.use_input_mask = use_input_mask
self.use_labels = use_labels
self.vocab_size = vocab_size
self.hidden_size = d_model
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.ffn_dim = ffn_dim
self.activation_function = activation_function
self.activation_dropout = activation_dropout
self.attention_dropout = attention_dropout
self.max_position_embeddings = max_position_embeddings
self.initializer_range = initializer_range
self.scope = None
self.bos_token_id = 0
self.eos_token_id = 2
self.pad_token_id = 1
def prepare_config_and_inputs(self):
input_ids = np.clip(ids_tensor([self.batch_size, self.seq_length], self.vocab_size), 3, self.vocab_size)
input_mask = None
if self.use_input_mask:
input_mask = random_attention_mask([self.batch_size, self.seq_length])
config = XGLMConfig(
vocab_size=self.vocab_size,
d_model=self.hidden_size,
num_layers=self.num_hidden_layers,
attention_heads=self.num_attention_heads,
ffn_dim=self.ffn_dim,
activation_function=self.activation_function,
activation_dropout=self.activation_dropout,
attention_dropout=self.attention_dropout,
max_position_embeddings=self.max_position_embeddings,
initializer_range=self.initializer_range,
use_cache=True,
bos_token_id=self.bos_token_id,
eos_token_id=self.eos_token_id,
pad_token_id=self.pad_token_id,
)
return (config, input_ids, input_mask)
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
config, input_ids, attention_mask = config_and_inputs
inputs_dict = {"input_ids": input_ids, "attention_mask": attention_mask}
return config, inputs_dict
def check_use_cache_forward(self, model_class_name, config, input_ids, attention_mask):
max_decoder_length = 20
model = model_class_name(config)
past_key_values = model.init_cache(input_ids.shape[0], max_decoder_length)
attention_mask = jnp.ones((input_ids.shape[0], max_decoder_length), dtype="i4")
position_ids = jnp.broadcast_to(
jnp.arange(input_ids.shape[-1] - 1)[None, :], (input_ids.shape[0], input_ids.shape[-1] - 1)
)
outputs_cache = model(
input_ids[:, :-1],
attention_mask=attention_mask,
past_key_values=past_key_values,
position_ids=position_ids,
)
position_ids = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]], dtype="i4")
outputs_cache_next = model(
input_ids[:, -1:],
attention_mask=attention_mask,
past_key_values=outputs_cache.past_key_values,
position_ids=position_ids,
)
outputs = model(input_ids)
diff = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5])))
self.parent.assertTrue(diff < 1e-3, msg=f"Max diff is {diff}")
def check_use_cache_forward_with_attn_mask(self, model_class_name, config, input_ids, attention_mask):
max_decoder_length = 20
model = model_class_name(config)
attention_mask_cache = jnp.concatenate(
[attention_mask, jnp.zeros((attention_mask.shape[0], max_decoder_length - attention_mask.shape[1]))],
axis=-1,
)
past_key_values = model.init_cache(input_ids.shape[0], max_decoder_length)
position_ids = jnp.broadcast_to(
jnp.arange(input_ids.shape[-1] - 1)[None, :], (input_ids.shape[0], input_ids.shape[-1] - 1)
)
outputs_cache = model(
input_ids[:, :-1],
attention_mask=attention_mask_cache,
past_key_values=past_key_values,
position_ids=position_ids,
)
position_ids = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]], dtype="i4")
outputs_cache_next = model(
input_ids[:, -1:],
past_key_values=outputs_cache.past_key_values,
attention_mask=attention_mask_cache,
position_ids=position_ids,
)
outputs = model(input_ids, attention_mask=attention_mask)
diff = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5])))
self.parent.assertTrue(diff < 1e-3, msg=f"Max diff is {diff}")
@require_sentencepiece
@require_flax
class FlaxXGLMModelTest(FlaxModelTesterMixin, unittest.TestCase):
all_model_classes = (FlaxXGLMModel, FlaxXGLMForCausalLM) if is_flax_available() else ()
def setUp(self):
self.model_tester = FlaxXGLMModelTester(self)
def test_use_cache_forward(self):
for model_class_name in self.all_model_classes:
config, input_ids, attention_mask = self.model_tester.prepare_config_and_inputs()
self.model_tester.check_use_cache_forward(model_class_name, config, input_ids, attention_mask)
def test_use_cache_forward_with_attn_mask(self):
for model_class_name in self.all_model_classes:
config, input_ids, attention_mask = self.model_tester.prepare_config_and_inputs()
self.model_tester.check_use_cache_forward_with_attn_mask(
model_class_name, config, input_ids, attention_mask
)
@slow
def test_batch_generation(self):
tokenizer = XGLMTokenizer.from_pretrained("XGLM", padding_side="left")
inputs = tokenizer(["Hello this is a long string", "Hey"], return_tensors="np", padding=True, truncation=True)
model = FlaxXGLMForCausalLM.from_pretrained("facebook/xglm-564M")
model.config.num_beams = 1
model.config.do_sample = False
jit_generate = jax.jit(model.generate)
output_sequences = jit_generate(inputs["input_ids"], attention_mask=inputs["attention_mask"]).sequences
output_string = tokenizer.batch_decode(output_sequences, skip_special_tokens=True)
expected_string = [
"Hello this is a long string of questions, but I'm not sure if I'm",
"Hey, I'm a newbie to the forum and I'",
]
self.assertListEqual(output_string, expected_string)
@slow
def test_model_from_pretrained(self):
for model_class_name in self.all_model_classes:
model = model_class_name.from_pretrained("facebook/xglm-564M")
outputs = model(np.ones((1, 1)))
self.assertIsNotNone(outputs)