mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-31 10:12:23 +06:00

* add fast image processor nougat * test fixes * docstring white space * last fixes * docstring_type * tolerance unit test * fix tolerance * fix rtol * remove traling white space * remove white space * note for tolerance unit test * fix tests * remove print --------- Co-authored-by: yonigozlan <yoni.gozlan@huggingface.co> Co-authored-by: Yoni Gozlan <74535834+yonigozlan@users.noreply.github.com>
321 lines
15 KiB
Python
321 lines
15 KiB
Python
# Copyright 2023 HuggingFace Inc.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
|
|
import unittest
|
|
|
|
import numpy as np
|
|
import requests
|
|
from huggingface_hub import hf_hub_download
|
|
|
|
from transformers.image_utils import SizeDict
|
|
from transformers.testing_utils import require_torch, require_vision
|
|
from transformers.utils import cached_property, is_torch_available, is_torchvision_available, is_vision_available
|
|
|
|
from ...test_image_processing_common import ImageProcessingTestMixin, prepare_image_inputs
|
|
|
|
|
|
if is_torch_available():
|
|
import torch
|
|
|
|
if is_vision_available():
|
|
from PIL import Image
|
|
|
|
from transformers import NougatImageProcessor
|
|
|
|
if is_torchvision_available():
|
|
from transformers import NougatImageProcessorFast
|
|
|
|
|
|
class NougatImageProcessingTester:
|
|
def __init__(
|
|
self,
|
|
parent,
|
|
batch_size=7,
|
|
num_channels=3,
|
|
image_size=18,
|
|
min_resolution=30,
|
|
max_resolution=400,
|
|
do_crop_margin=True,
|
|
do_resize=True,
|
|
size=None,
|
|
do_thumbnail=True,
|
|
do_align_long_axis: bool = False,
|
|
do_pad=True,
|
|
do_normalize: bool = True,
|
|
image_mean=[0.5, 0.5, 0.5],
|
|
image_std=[0.5, 0.5, 0.5],
|
|
):
|
|
size = size if size is not None else {"height": 20, "width": 20}
|
|
self.parent = parent
|
|
self.batch_size = batch_size
|
|
self.num_channels = num_channels
|
|
self.image_size = image_size
|
|
self.min_resolution = min_resolution
|
|
self.max_resolution = max_resolution
|
|
self.do_crop_margin = do_crop_margin
|
|
self.do_resize = do_resize
|
|
self.size = size
|
|
self.do_thumbnail = do_thumbnail
|
|
self.do_align_long_axis = do_align_long_axis
|
|
self.do_pad = do_pad
|
|
self.do_normalize = do_normalize
|
|
self.image_mean = image_mean
|
|
self.image_std = image_std
|
|
self.data_format = "channels_first"
|
|
self.input_data_format = "channels_first"
|
|
|
|
def prepare_image_processor_dict(self):
|
|
return {
|
|
"do_crop_margin": self.do_crop_margin,
|
|
"do_resize": self.do_resize,
|
|
"size": self.size,
|
|
"do_thumbnail": self.do_thumbnail,
|
|
"do_align_long_axis": self.do_align_long_axis,
|
|
"do_pad": self.do_pad,
|
|
"do_normalize": self.do_normalize,
|
|
"image_mean": self.image_mean,
|
|
"image_std": self.image_std,
|
|
}
|
|
|
|
def expected_output_image_shape(self, images):
|
|
return self.num_channels, self.size["height"], self.size["width"]
|
|
|
|
def prepare_dummy_image(self):
|
|
revision = "ec57bf8c8b1653a209c13f6e9ee66b12df0fc2db"
|
|
filepath = hf_hub_download(
|
|
repo_id="hf-internal-testing/fixtures_docvqa",
|
|
filename="nougat_pdf.png",
|
|
repo_type="dataset",
|
|
revision=revision,
|
|
)
|
|
image = Image.open(filepath).convert("RGB")
|
|
return image
|
|
|
|
def prepare_image_inputs(self, equal_resolution=False, numpify=False, torchify=False):
|
|
return prepare_image_inputs(
|
|
batch_size=self.batch_size,
|
|
num_channels=self.num_channels,
|
|
min_resolution=self.min_resolution,
|
|
max_resolution=self.max_resolution,
|
|
equal_resolution=equal_resolution,
|
|
numpify=numpify,
|
|
torchify=torchify,
|
|
)
|
|
|
|
|
|
@require_torch
|
|
@require_vision
|
|
class NougatImageProcessingTest(ImageProcessingTestMixin, unittest.TestCase):
|
|
image_processing_class = NougatImageProcessor if is_vision_available() else None
|
|
fast_image_processing_class = NougatImageProcessorFast if is_torchvision_available() else None
|
|
|
|
def setUp(self):
|
|
super().setUp()
|
|
self.image_processor_tester = NougatImageProcessingTester(self)
|
|
|
|
@property
|
|
def image_processor_dict(self):
|
|
return self.image_processor_tester.prepare_image_processor_dict()
|
|
|
|
@cached_property
|
|
def image_processor(self):
|
|
return self.image_processing_class(**self.image_processor_dict)
|
|
|
|
def test_image_processor_properties(self):
|
|
for image_processing_class in self.image_processor_list:
|
|
image_processing = image_processing_class(**self.image_processor_dict)
|
|
self.assertTrue(hasattr(image_processing, "do_resize"))
|
|
self.assertTrue(hasattr(image_processing, "size"))
|
|
self.assertTrue(hasattr(image_processing, "do_normalize"))
|
|
self.assertTrue(hasattr(image_processing, "image_mean"))
|
|
self.assertTrue(hasattr(image_processing, "image_std"))
|
|
|
|
def test_image_processor_from_dict_with_kwargs(self):
|
|
for image_processing_class in self.image_processor_list:
|
|
image_processor = image_processing_class(**self.image_processor_dict)
|
|
self.assertEqual(image_processor.size, {"height": 20, "width": 20})
|
|
|
|
kwargs = dict(self.image_processor_dict)
|
|
kwargs.pop("size", None)
|
|
image_processor = self.image_processing_class(**kwargs, size=42)
|
|
self.assertEqual(image_processor.size, {"height": 42, "width": 42})
|
|
|
|
def test_expected_output(self):
|
|
dummy_image = self.image_processor_tester.prepare_dummy_image()
|
|
for image_processing_class in self.image_processor_list:
|
|
image_processor = image_processing_class(**self.image_processor_dict)
|
|
inputs = image_processor(dummy_image, return_tensors="pt")
|
|
torch.testing.assert_close(inputs["pixel_values"].mean(), torch.tensor(0.4906), rtol=1e-3, atol=1e-3)
|
|
|
|
def test_crop_margin_all_white(self):
|
|
image = np.uint8(np.ones((3, 100, 100)) * 255)
|
|
for image_processing_class in self.image_processor_list:
|
|
if image_processing_class == NougatImageProcessorFast:
|
|
image = torch.from_numpy(image)
|
|
image_processor = image_processing_class(**self.image_processor_dict)
|
|
cropped_image = image_processor.crop_margin(image)
|
|
self.assertTrue(torch.equal(image, cropped_image))
|
|
else:
|
|
image_processor = image_processing_class(**self.image_processor_dict)
|
|
cropped_image = image_processor.crop_margin(image)
|
|
self.assertTrue(np.array_equal(image, cropped_image))
|
|
|
|
def test_crop_margin_centered_black_square(self):
|
|
image = np.ones((3, 100, 100), dtype=np.uint8) * 255
|
|
image[:, 45:55, 45:55] = 0
|
|
expected_cropped = image[:, 45:55, 45:55]
|
|
for image_processing_class in self.image_processor_list:
|
|
if image_processing_class == NougatImageProcessorFast:
|
|
image = torch.from_numpy(image)
|
|
expected_cropped = torch.from_numpy(expected_cropped)
|
|
image_processor = image_processing_class(**self.image_processor_dict)
|
|
cropped_image = image_processor.crop_margin(image)
|
|
self.assertTrue(torch.equal(expected_cropped, cropped_image))
|
|
else:
|
|
image_processor = image_processing_class(**self.image_processor_dict)
|
|
cropped_image = image_processor.crop_margin(image)
|
|
self.assertTrue(np.array_equal(expected_cropped, cropped_image))
|
|
|
|
def test_align_long_axis_no_rotation(self):
|
|
image = np.uint8(np.ones((3, 100, 200)) * 255)
|
|
for image_processing_class in self.image_processor_list:
|
|
if image_processing_class == NougatImageProcessorFast:
|
|
image = torch.from_numpy(image)
|
|
size = SizeDict(height=200, width=300)
|
|
image_processor = image_processing_class(**self.image_processor_dict)
|
|
aligned_image = image_processor.align_long_axis(image, size)
|
|
self.assertEqual(image.shape, aligned_image.shape)
|
|
else:
|
|
size = {"height": 200, "width": 300}
|
|
image_processor = image_processing_class(**self.image_processor_dict)
|
|
aligned_image = image_processor.align_long_axis(image, size)
|
|
self.assertEqual(image.shape, aligned_image.shape)
|
|
|
|
def test_align_long_axis_with_rotation(self):
|
|
image = np.uint8(np.ones((3, 200, 100)) * 255)
|
|
for image_processing_class in self.image_processor_list:
|
|
image_processor = image_processing_class(**self.image_processor_dict)
|
|
if image_processing_class == NougatImageProcessorFast:
|
|
image = torch.from_numpy(image)
|
|
size = SizeDict(height=300, width=200)
|
|
image_processor = image_processing_class(**self.image_processor_dict)
|
|
aligned_image = image_processor.align_long_axis(image, size)
|
|
self.assertEqual(torch.Size([3, 200, 100]), aligned_image.shape)
|
|
else:
|
|
size = {"height": 300, "width": 200}
|
|
image_processor = image_processing_class(**self.image_processor_dict)
|
|
aligned_image = image_processor.align_long_axis(image, size)
|
|
self.assertEqual((3, 200, 100), aligned_image.shape)
|
|
|
|
def test_align_long_axis_data_format(self):
|
|
image = np.uint8(np.ones((3, 100, 200)) * 255)
|
|
for image_processing_class in self.image_processor_list:
|
|
if image_processing_class == NougatImageProcessorFast:
|
|
image = torch.from_numpy(image)
|
|
image_processor = image_processing_class(**self.image_processor_dict)
|
|
size = SizeDict(height=200, width=300)
|
|
aligned_image = image_processor.align_long_axis(image, size)
|
|
self.assertEqual(torch.Size([3, 100, 200]), aligned_image.shape)
|
|
else:
|
|
size = {"height": 200, "width": 300}
|
|
data_format = "channels_first"
|
|
image_processor = image_processing_class(**self.image_processor_dict)
|
|
aligned_image = image_processor.align_long_axis(image, size, data_format)
|
|
self.assertEqual((3, 100, 200), aligned_image.shape)
|
|
|
|
def prepare_dummy_np_image(self):
|
|
revision = "ec57bf8c8b1653a209c13f6e9ee66b12df0fc2db"
|
|
filepath = hf_hub_download(
|
|
repo_id="hf-internal-testing/fixtures_docvqa",
|
|
filename="nougat_pdf.png",
|
|
repo_type="dataset",
|
|
revision=revision,
|
|
)
|
|
image = Image.open(filepath).convert("RGB")
|
|
return np.array(image).transpose(2, 0, 1)
|
|
|
|
def test_crop_margin_equality_cv2_python(self):
|
|
image = self.prepare_dummy_np_image()
|
|
for image_processing_class in self.image_processor_list:
|
|
if image_processing_class == NougatImageProcessorFast:
|
|
image = torch.from_numpy(image)
|
|
image_processor = image_processing_class(**self.image_processor_dict)
|
|
image_cropped_python = image_processor.crop_margin(image)
|
|
self.assertEqual(image_cropped_python.shape, torch.Size([3, 850, 685]))
|
|
self.assertAlmostEqual(image_cropped_python.float().mean().item(), 237.43881150708458, delta=0.001)
|
|
else:
|
|
image_processor = image_processing_class(**self.image_processor_dict)
|
|
image_cropped_python = image_processor.crop_margin(image)
|
|
self.assertEqual(image_cropped_python.shape, (3, 850, 685))
|
|
self.assertAlmostEqual(image_cropped_python.mean(), 237.43881150708458, delta=0.001)
|
|
|
|
def test_call_numpy_4_channels(self):
|
|
for image_processing_class in self.image_processor_list:
|
|
if image_processing_class == NougatImageProcessor:
|
|
# Test that can process images which have an arbitrary number of channels
|
|
# Initialize image_processing
|
|
image_processor = image_processing_class(**self.image_processor_dict)
|
|
|
|
# create random numpy tensors
|
|
self.image_processor_tester.num_channels = 4
|
|
image_inputs = self.image_processor_tester.prepare_image_inputs(equal_resolution=False, numpify=True)
|
|
|
|
# Test not batched input
|
|
encoded_images = image_processor(
|
|
image_inputs[0],
|
|
return_tensors="pt",
|
|
input_data_format="channels_last",
|
|
image_mean=0,
|
|
image_std=1,
|
|
).pixel_values
|
|
expected_output_image_shape = self.image_processor_tester.expected_output_image_shape(
|
|
[image_inputs[0]]
|
|
)
|
|
self.assertEqual(tuple(encoded_images.shape), (1, *expected_output_image_shape))
|
|
|
|
# Test batched
|
|
encoded_images = image_processor(
|
|
image_inputs,
|
|
return_tensors="pt",
|
|
input_data_format="channels_last",
|
|
image_mean=0,
|
|
image_std=1,
|
|
).pixel_values
|
|
expected_output_image_shape = self.image_processor_tester.expected_output_image_shape(image_inputs)
|
|
self.assertEqual(
|
|
tuple(encoded_images.shape), (self.image_processor_tester.batch_size, *expected_output_image_shape)
|
|
)
|
|
|
|
def test_slow_fast_equivalence(self):
|
|
if not self.test_slow_image_processor or not self.test_fast_image_processor:
|
|
self.skipTest(reason="Skipping slow/fast equivalence test")
|
|
|
|
if self.image_processing_class is None or self.fast_image_processing_class is None:
|
|
self.skipTest(reason="Skipping slow/fast equivalence test as one of the image processors is not defined")
|
|
|
|
dummy_image = Image.open(
|
|
requests.get("http://images.cocodataset.org/val2017/000000039769.jpg", stream=True).raw
|
|
)
|
|
image_processor_slow = self.image_processing_class(**self.image_processor_dict)
|
|
image_processor_fast = self.fast_image_processing_class(**self.image_processor_dict)
|
|
|
|
encoding_slow = image_processor_slow(dummy_image, return_tensors="pt")
|
|
encoding_fast = image_processor_fast(dummy_image, return_tensors="pt")
|
|
# Adding a larget than usual tolerance because the slow processor uses reducing_gap=2.0 during resizing.
|
|
torch.testing.assert_close(encoding_slow.pixel_values, encoding_fast.pixel_values, atol=2e-1, rtol=0)
|
|
self.assertLessEqual(
|
|
torch.mean(torch.abs(encoding_slow.pixel_values - encoding_fast.pixel_values)).item(), 2e-2
|
|
)
|