mirror of
https://github.com/huggingface/transformers.git
synced 2025-08-01 18:51:14 +06:00
150 lines
5.8 KiB
Python
150 lines
5.8 KiB
Python
# Copyright 2023 The HuggingFace Team. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
import shutil
|
|
import tempfile
|
|
import unittest
|
|
|
|
import numpy as np
|
|
|
|
from transformers.testing_utils import (
|
|
require_torch,
|
|
require_torchvision,
|
|
require_vision,
|
|
)
|
|
from transformers.utils import is_tf_available, is_torch_available, is_vision_available
|
|
|
|
|
|
if is_vision_available():
|
|
from PIL import Image
|
|
|
|
from transformers import AutoProcessor, Sam2ImageProcessor, Sam2Processor
|
|
|
|
if is_torch_available():
|
|
import torch
|
|
|
|
if is_tf_available():
|
|
pass
|
|
|
|
|
|
@require_vision
|
|
@require_torchvision
|
|
class Sam2ProcessorTest(unittest.TestCase):
|
|
def setUp(self):
|
|
self.tmpdirname = tempfile.mkdtemp()
|
|
image_processor = Sam2ImageProcessor()
|
|
processor = Sam2Processor(image_processor)
|
|
processor.save_pretrained(self.tmpdirname)
|
|
|
|
def get_image_processor(self, **kwargs):
|
|
return AutoProcessor.from_pretrained(self.tmpdirname, **kwargs).image_processor
|
|
|
|
def tearDown(self):
|
|
shutil.rmtree(self.tmpdirname)
|
|
|
|
def prepare_image_inputs(self):
|
|
"""This function prepares a list of PIL images, or a list of numpy arrays if one specifies numpify=True,
|
|
or a list of PyTorch tensors if one specifies torchify=True.
|
|
"""
|
|
image_inputs = [np.random.randint(255, size=(3, 30, 400), dtype=np.uint8)]
|
|
image_inputs = [Image.fromarray(np.moveaxis(x, 0, -1)) for x in image_inputs]
|
|
return image_inputs
|
|
|
|
def prepare_mask_inputs(self):
|
|
"""This function prepares a list of PIL images, or a list of numpy arrays if one specifies numpify=True,
|
|
or a list of PyTorch tensors if one specifies torchify=True.
|
|
"""
|
|
mask_inputs = [np.random.randint(255, size=(30, 400), dtype=np.uint8)]
|
|
mask_inputs = [Image.fromarray(x) for x in mask_inputs]
|
|
return mask_inputs
|
|
|
|
def test_save_load_pretrained_additional_features(self):
|
|
processor = Sam2Processor(image_processor=self.get_image_processor())
|
|
processor.save_pretrained(self.tmpdirname)
|
|
|
|
image_processor_add_kwargs = self.get_image_processor(do_normalize=False, padding_value=1.0)
|
|
|
|
processor = Sam2Processor.from_pretrained(self.tmpdirname, do_normalize=False, padding_value=1.0)
|
|
|
|
self.assertEqual(processor.image_processor.to_json_string(), image_processor_add_kwargs.to_json_string())
|
|
self.assertIsInstance(processor.image_processor, Sam2ImageProcessor)
|
|
|
|
def test_image_processor_no_masks(self):
|
|
image_processor = self.get_image_processor()
|
|
|
|
processor = Sam2Processor(image_processor=image_processor)
|
|
|
|
image_input = self.prepare_image_inputs()
|
|
|
|
input_feat_extract = image_processor(image_input, return_tensors="np")
|
|
input_processor = processor(images=image_input, return_tensors="np")
|
|
|
|
for key in input_feat_extract.keys():
|
|
self.assertAlmostEqual(input_feat_extract[key].sum(), input_processor[key].sum(), delta=1e-2)
|
|
|
|
for image in input_feat_extract.pixel_values:
|
|
self.assertEqual(image.shape, (3, 1024, 1024))
|
|
|
|
for original_size in input_feat_extract.original_sizes:
|
|
np.testing.assert_array_equal(original_size, np.array([30, 400]))
|
|
|
|
for reshaped_input_size in input_feat_extract.reshaped_input_sizes:
|
|
np.testing.assert_array_equal(
|
|
reshaped_input_size, np.array([77, 1024])
|
|
) # reshaped_input_size value is before padding
|
|
|
|
def test_image_processor_with_masks(self):
|
|
image_processor = self.get_image_processor()
|
|
|
|
processor = Sam2Processor(image_processor=image_processor)
|
|
|
|
image_input = self.prepare_image_inputs()
|
|
mask_input = self.prepare_mask_inputs()
|
|
|
|
input_feat_extract = image_processor(images=image_input, segmentation_maps=mask_input, return_tensors="np")
|
|
input_processor = processor(images=image_input, segmentation_maps=mask_input, return_tensors="np")
|
|
|
|
for key in input_feat_extract.keys():
|
|
self.assertAlmostEqual(input_feat_extract[key].sum(), input_processor[key].sum(), delta=1e-2)
|
|
|
|
for label in input_feat_extract.labels:
|
|
self.assertEqual(label.shape, (256, 256))
|
|
|
|
@require_torch
|
|
def test_post_process_masks(self):
|
|
image_processor = self.get_image_processor()
|
|
|
|
processor = Sam2Processor(image_processor=image_processor)
|
|
dummy_masks = [torch.ones((1, 3, 5, 5))]
|
|
|
|
original_sizes = [[1764, 2646]]
|
|
|
|
reshaped_input_size = [[683, 1024]]
|
|
masks = processor.post_process_masks(dummy_masks, original_sizes, reshaped_input_size)
|
|
self.assertEqual(masks[0].shape, (1, 3, 1764, 2646))
|
|
|
|
masks = processor.post_process_masks(
|
|
dummy_masks, torch.tensor(original_sizes), torch.tensor(reshaped_input_size)
|
|
)
|
|
self.assertEqual(masks[0].shape, (1, 3, 1764, 2646))
|
|
|
|
# should also work with np
|
|
dummy_masks = [np.ones((1, 3, 5, 5))]
|
|
masks = processor.post_process_masks(dummy_masks, np.array(original_sizes), np.array(reshaped_input_size))
|
|
|
|
self.assertEqual(masks[0].shape, (1, 3, 1764, 2646))
|
|
|
|
dummy_masks = [[1, 0], [0, 1]]
|
|
with self.assertRaises(ValueError):
|
|
masks = processor.post_process_masks(dummy_masks, np.array(original_sizes), np.array(reshaped_input_size))
|