mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-03 12:50:06 +06:00
1105 lines
43 KiB
Python
1105 lines
43 KiB
Python
# coding=utf-8
|
|
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""Testing suite for the PyTorch SAM2 model."""
|
|
|
|
import gc
|
|
import tempfile
|
|
import unittest
|
|
|
|
import requests
|
|
|
|
from transformers import (
|
|
Sam2Config,
|
|
Sam2MaskDecoderConfig,
|
|
Sam2MemoryAttentionConfig,
|
|
Sam2MemoryEncoderConfig,
|
|
Sam2Processor,
|
|
Sam2PromptEncoderConfig,
|
|
Sam2VisionConfig,
|
|
)
|
|
from transformers.testing_utils import (
|
|
backend_empty_cache,
|
|
require_torch,
|
|
require_torch_sdpa,
|
|
slow,
|
|
torch_device,
|
|
)
|
|
from transformers.utils import is_torch_available, is_vision_available
|
|
from transformers.video_utils import load_video
|
|
|
|
from ...test_configuration_common import ConfigTester
|
|
from ...test_modeling_common import ModelTesterMixin, floats_tensor
|
|
from ...test_pipeline_mixin import PipelineTesterMixin
|
|
|
|
|
|
if is_torch_available():
|
|
import torch
|
|
from torch import nn
|
|
|
|
from transformers import Sam2Model, Sam2Processor, Sam2VisionModel
|
|
|
|
|
|
if is_vision_available():
|
|
from PIL import Image
|
|
|
|
|
|
class Sam2VisionModelTester:
|
|
def __init__(
|
|
self,
|
|
parent,
|
|
hidden_size=12,
|
|
num_channels=3,
|
|
image_size=128,
|
|
patch_kernel_size=7,
|
|
patch_stride=4,
|
|
patch_padding=3,
|
|
batch_size=2,
|
|
dim_mul=2.0,
|
|
stages=[1, 2, 7, 2],
|
|
backbone_channel_list=[96, 48, 24, 12],
|
|
backbone_feature_sizes=[[32, 32], [16, 16], [8, 8]],
|
|
fpn_hidden_size=32,
|
|
is_training=False,
|
|
):
|
|
self.parent = parent
|
|
self.hidden_size = hidden_size
|
|
self.image_size = image_size
|
|
self.num_channels = num_channels
|
|
self.patch_kernel_size = patch_kernel_size
|
|
self.patch_stride = patch_stride
|
|
self.patch_padding = patch_padding
|
|
self.batch_size = batch_size
|
|
self.is_training = is_training
|
|
self.stages = stages
|
|
self.dim_mul = dim_mul
|
|
self.backbone_channel_list = backbone_channel_list
|
|
self.backbone_feature_sizes = backbone_feature_sizes
|
|
self.fpn_hidden_size = fpn_hidden_size
|
|
|
|
def get_config(self):
|
|
return Sam2VisionConfig(
|
|
hidden_size=self.hidden_size,
|
|
image_size=self.image_size,
|
|
patch_kernel_size=self.patch_kernel_size,
|
|
patch_stride=self.patch_stride,
|
|
patch_padding=self.patch_padding,
|
|
num_channels=self.num_channels,
|
|
stages=self.stages,
|
|
backbone_channel_list=self.backbone_channel_list,
|
|
backbone_feature_sizes=self.backbone_feature_sizes,
|
|
fpn_hidden_size=self.fpn_hidden_size,
|
|
)
|
|
|
|
def prepare_config_and_inputs(self):
|
|
pixel_values = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size])
|
|
config = self.get_config()
|
|
|
|
return config, pixel_values
|
|
|
|
def create_and_check_model(self, config, pixel_values):
|
|
model = Sam2VisionModel(config=config)
|
|
model.to(torch_device)
|
|
model.eval()
|
|
with torch.no_grad():
|
|
result = model(pixel_values)
|
|
output_size = self.image_size // self.patch_stride // (self.dim_mul * len(self.stages))
|
|
output_channels = self.hidden_size * self.dim_mul * len(self.stages)
|
|
self.parent.assertEqual(
|
|
result.last_hidden_state.shape, (self.batch_size, output_size, output_size, output_channels)
|
|
)
|
|
|
|
def prepare_config_and_inputs_for_common(self):
|
|
config_and_inputs = self.prepare_config_and_inputs()
|
|
config, pixel_values = config_and_inputs
|
|
inputs_dict = {"pixel_values": pixel_values}
|
|
return config, inputs_dict
|
|
|
|
|
|
@require_torch
|
|
class Sam2VisionModelTest(ModelTesterMixin, unittest.TestCase):
|
|
"""
|
|
Here we also overwrite some of the tests of test_modeling_common.py, as SAM's vision encoder does not use input_ids, inputs_embeds,
|
|
attention_mask and seq_length.
|
|
"""
|
|
|
|
all_model_classes = (Sam2VisionModel,) if is_torch_available() else ()
|
|
fx_compatible = False
|
|
test_pruning = False
|
|
test_resize_embeddings = False
|
|
test_head_masking = False
|
|
test_torchscript = False
|
|
test_torch_exportable = True
|
|
|
|
def setUp(self):
|
|
self.model_tester = Sam2VisionModelTester(self)
|
|
self.config_tester = ConfigTester(self, config_class=Sam2VisionConfig, has_text_modality=False)
|
|
|
|
def test_config(self):
|
|
self.config_tester.create_and_test_config_to_json_string()
|
|
self.config_tester.create_and_test_config_to_json_file()
|
|
self.config_tester.create_and_test_config_from_and_save_pretrained()
|
|
self.config_tester.create_and_test_config_with_num_labels()
|
|
self.config_tester.check_config_can_be_init_without_params()
|
|
self.config_tester.check_config_arguments_init()
|
|
|
|
@unittest.skip(reason="SAM's vision encoder does not use inputs_embeds")
|
|
def test_inputs_embeds(self):
|
|
pass
|
|
|
|
def test_model_get_set_embeddings(self):
|
|
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
|
|
|
|
for model_class in self.all_model_classes:
|
|
model = model_class(config)
|
|
self.assertIsInstance(model.get_input_embeddings(), (nn.Module))
|
|
x = model.get_output_embeddings()
|
|
self.assertTrue(x is None or isinstance(x, nn.Linear))
|
|
|
|
def test_model(self):
|
|
config_and_inputs = self.model_tester.prepare_config_and_inputs()
|
|
self.model_tester.create_and_check_model(*config_and_inputs)
|
|
|
|
# Overriding as attention shape depends on window_size
|
|
def test_attention_outputs(self):
|
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
|
|
config.return_dict = True
|
|
|
|
for model_class in self.all_model_classes:
|
|
inputs_dict["output_attentions"] = True
|
|
inputs_dict["output_hidden_states"] = False
|
|
config.return_dict = True
|
|
model = model_class._from_config(config, attn_implementation="eager")
|
|
config = model.config
|
|
model.to(torch_device)
|
|
model.eval()
|
|
with torch.no_grad():
|
|
outputs = model(**self._prepare_for_class(inputs_dict, model_class))
|
|
attentions = outputs.attentions
|
|
expected_num_attentions = sum(self.model_tester.stages)
|
|
self.assertEqual(len(attentions), expected_num_attentions)
|
|
|
|
# check that output_attentions also work using config
|
|
del inputs_dict["output_attentions"]
|
|
config.output_attentions = True
|
|
window_size = config.window_spec[0]
|
|
out_dim = config.hidden_size
|
|
patch_stride = config.patch_stride
|
|
num_windows = self.model_tester.batch_size * (config.image_size // (window_size * patch_stride)) ** 2
|
|
model = model_class(config)
|
|
model.to(torch_device)
|
|
model.eval()
|
|
with torch.no_grad():
|
|
outputs = model(**self._prepare_for_class(inputs_dict, model_class))
|
|
attentions = outputs.attentions
|
|
self.assertEqual(len(attentions), expected_num_attentions)
|
|
self.assertListEqual(
|
|
list(attentions[0].shape[-4:]),
|
|
[num_windows, window_size, window_size, out_dim],
|
|
)
|
|
|
|
# Check attention is always last and order is fine
|
|
inputs_dict["output_attentions"] = True
|
|
inputs_dict["output_hidden_states"] = True
|
|
model = model_class(config)
|
|
model.to(torch_device)
|
|
model.eval()
|
|
with torch.no_grad():
|
|
outputs = model(**self._prepare_for_class(inputs_dict, model_class))
|
|
attentions = outputs.attentions
|
|
self.assertEqual(len(attentions), expected_num_attentions)
|
|
self.assertListEqual(
|
|
list(attentions[0].shape[-4:]),
|
|
[num_windows, window_size, window_size, out_dim],
|
|
)
|
|
|
|
# Overriding as attention shape depends on window_size
|
|
def test_hidden_states_output(self):
|
|
def check_hidden_states_output(inputs_dict, config, model_class, image_size):
|
|
model = model_class(config)
|
|
model.to(torch_device)
|
|
model.eval()
|
|
|
|
with torch.no_grad():
|
|
outputs = model(**self._prepare_for_class(inputs_dict, model_class))
|
|
|
|
hidden_states = outputs.hidden_states
|
|
|
|
expected_num_layers = sum(self.model_tester.stages) + 1
|
|
self.assertEqual(len(hidden_states), expected_num_layers)
|
|
|
|
self.assertListEqual(
|
|
list(hidden_states[0].shape[-4:]),
|
|
[
|
|
self.model_tester.batch_size,
|
|
self.model_tester.image_size // self.model_tester.patch_stride,
|
|
self.model_tester.image_size // self.model_tester.patch_stride,
|
|
self.model_tester.hidden_size,
|
|
],
|
|
)
|
|
|
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
|
|
|
|
image_size = self.model_tester.image_size
|
|
|
|
for model_class in self.all_model_classes:
|
|
inputs_dict["output_hidden_states"] = True
|
|
check_hidden_states_output(inputs_dict, config, model_class, image_size)
|
|
|
|
# check that output_hidden_states also work using config
|
|
del inputs_dict["output_hidden_states"]
|
|
config.output_hidden_states = True
|
|
|
|
check_hidden_states_output(inputs_dict, config, model_class, image_size)
|
|
|
|
# Override as diffence slightly higher than the threshold
|
|
def test_batching_equivalence(self, atol=5e-4, rtol=5e-4):
|
|
super().test_batching_equivalence(atol=atol, rtol=rtol)
|
|
|
|
@require_torch_sdpa
|
|
def test_sdpa_can_compile_dynamic(self):
|
|
self.skipTest(reason="SAM model can't be compiled dynamic yet")
|
|
|
|
|
|
class Sam2PromptEncoderTester:
|
|
def __init__(
|
|
self,
|
|
hidden_size=32,
|
|
input_image_size=128,
|
|
patch_size=16,
|
|
mask_input_channels=8,
|
|
num_point_embeddings=4,
|
|
hidden_act="gelu",
|
|
):
|
|
self.hidden_size = hidden_size
|
|
self.input_image_size = input_image_size
|
|
self.patch_size = patch_size
|
|
self.mask_input_channels = mask_input_channels
|
|
self.num_point_embeddings = num_point_embeddings
|
|
self.hidden_act = hidden_act
|
|
|
|
def get_config(self):
|
|
return Sam2PromptEncoderConfig(
|
|
image_size=self.input_image_size,
|
|
patch_size=self.patch_size,
|
|
mask_input_channels=self.mask_input_channels,
|
|
hidden_size=self.hidden_size,
|
|
num_point_embeddings=self.num_point_embeddings,
|
|
hidden_act=self.hidden_act,
|
|
)
|
|
|
|
def prepare_config_and_inputs(self):
|
|
dummy_points = floats_tensor([self.batch_size, 3, 2])
|
|
config = self.get_config()
|
|
|
|
return config, dummy_points
|
|
|
|
|
|
class Sam2MaskDecoderTester:
|
|
def __init__(
|
|
self,
|
|
hidden_size=32,
|
|
hidden_act="relu",
|
|
mlp_dim=64,
|
|
num_hidden_layers=2,
|
|
num_attention_heads=4,
|
|
attention_downsample_rate=2,
|
|
num_multimask_outputs=3,
|
|
iou_head_depth=3,
|
|
iou_head_hidden_dim=32,
|
|
):
|
|
self.hidden_size = hidden_size
|
|
self.hidden_act = hidden_act
|
|
self.mlp_dim = mlp_dim
|
|
self.num_hidden_layers = num_hidden_layers
|
|
self.num_attention_heads = num_attention_heads
|
|
self.attention_downsample_rate = attention_downsample_rate
|
|
self.num_multimask_outputs = num_multimask_outputs
|
|
self.iou_head_depth = iou_head_depth
|
|
self.iou_head_hidden_dim = iou_head_hidden_dim
|
|
|
|
def get_config(self):
|
|
return Sam2MaskDecoderConfig(
|
|
hidden_size=self.hidden_size,
|
|
hidden_act=self.hidden_act,
|
|
mlp_dim=self.mlp_dim,
|
|
num_hidden_layers=self.num_hidden_layers,
|
|
num_attention_heads=self.num_attention_heads,
|
|
attention_downsample_rate=self.attention_downsample_rate,
|
|
num_multimask_outputs=self.num_multimask_outputs,
|
|
iou_head_depth=self.iou_head_depth,
|
|
iou_head_hidden_dim=self.iou_head_hidden_dim,
|
|
)
|
|
|
|
def prepare_config_and_inputs(self):
|
|
config = self.get_config()
|
|
|
|
dummy_inputs = {
|
|
"image_embedding": floats_tensor([self.batch_size, self.hidden_size]),
|
|
}
|
|
|
|
return config, dummy_inputs
|
|
|
|
|
|
class Sam2MemoryEncoderTester:
|
|
def __init__(
|
|
self,
|
|
hidden_size=32,
|
|
num_heads=1,
|
|
num_channels=3,
|
|
image_size=64,
|
|
patch_kernel_size=2,
|
|
patch_stride=2,
|
|
patch_padding=1,
|
|
mask_downsampler_embed_dim=32,
|
|
memory_fuser_embed_dim=32,
|
|
):
|
|
self.hidden_size = hidden_size
|
|
self.num_heads = num_heads
|
|
self.num_channels = num_channels
|
|
self.image_size = image_size
|
|
self.patch_kernel_size = patch_kernel_size
|
|
self.patch_stride = patch_stride
|
|
self.patch_padding = patch_padding
|
|
self.mask_downsampler_embed_dim = mask_downsampler_embed_dim
|
|
self.memory_fuser_embed_dim = memory_fuser_embed_dim
|
|
|
|
def get_config(self):
|
|
return Sam2MemoryEncoderConfig(
|
|
hidden_size=self.hidden_size,
|
|
num_heads=self.num_heads,
|
|
num_channels=self.num_channels,
|
|
image_size=self.image_size,
|
|
patch_kernel_size=self.patch_kernel_size,
|
|
patch_stride=self.patch_stride,
|
|
patch_padding=self.patch_padding,
|
|
mask_downsampler_embed_dim=self.mask_downsampler_embed_dim,
|
|
memory_fuser_embed_dim=self.memory_fuser_embed_dim,
|
|
)
|
|
|
|
def prepare_config_and_inputs(self):
|
|
config = self.get_config()
|
|
|
|
dummy_inputs = {
|
|
"image_embedding": floats_tensor([self.batch_size, self.hidden_size]),
|
|
}
|
|
|
|
return config, dummy_inputs
|
|
|
|
|
|
class Sam2ModelTester:
|
|
def __init__(
|
|
self,
|
|
parent,
|
|
num_channels=3,
|
|
image_size=128,
|
|
hidden_size=12,
|
|
patch_kernel_size=7,
|
|
patch_stride=4,
|
|
patch_padding=3,
|
|
dim_mul=2.0,
|
|
stages=[1, 2, 7, 2],
|
|
backbone_channel_list=[96, 48, 24, 12],
|
|
backbone_feature_sizes=[[32, 32], [16, 16], [8, 8]],
|
|
fpn_hidden_size=32,
|
|
batch_size=2,
|
|
is_training=False,
|
|
):
|
|
self.parent = parent
|
|
self.image_size = image_size
|
|
self.hidden_size = hidden_size
|
|
self.patch_kernel_size = patch_kernel_size
|
|
self.patch_stride = patch_stride
|
|
self.patch_padding = patch_padding
|
|
self.dim_mul = dim_mul
|
|
self.stages = stages
|
|
self.backbone_channel_list = backbone_channel_list
|
|
self.backbone_feature_sizes = backbone_feature_sizes
|
|
self.fpn_hidden_size = fpn_hidden_size
|
|
self.batch_size = batch_size
|
|
self.num_channels = num_channels
|
|
self.is_training = is_training
|
|
self.prompt_encoder_tester = Sam2PromptEncoderTester()
|
|
self.mask_decoder_tester = Sam2MaskDecoderTester()
|
|
self.memory_encoder_tester = Sam2MemoryEncoderTester()
|
|
|
|
def prepare_config_and_inputs(self):
|
|
pixel_values = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size])
|
|
config = self.get_config()
|
|
|
|
return config, pixel_values
|
|
|
|
def get_config(self):
|
|
vision_config = Sam2VisionConfig(
|
|
hidden_size=self.hidden_size,
|
|
num_channels=self.num_channels,
|
|
image_size=self.image_size,
|
|
patch_kernel_size=self.patch_kernel_size,
|
|
patch_stride=self.patch_stride,
|
|
patch_padding=self.patch_padding,
|
|
dim_mul=self.dim_mul,
|
|
stages=self.stages,
|
|
backbone_channel_list=self.backbone_channel_list,
|
|
backbone_feature_sizes=self.backbone_feature_sizes,
|
|
fpn_hidden_size=self.fpn_hidden_size,
|
|
)
|
|
|
|
memory_attention_config = Sam2MemoryAttentionConfig(
|
|
hidden_size=self.hidden_size,
|
|
num_layers=1,
|
|
dim_feedforward=32,
|
|
)
|
|
|
|
prompt_encoder_config = self.prompt_encoder_tester.get_config()
|
|
|
|
mask_decoder_config = self.mask_decoder_tester.get_config()
|
|
|
|
memory_encoder_config = self.memory_encoder_tester.get_config()
|
|
|
|
return Sam2Config(
|
|
vision_config=vision_config,
|
|
prompt_encoder_config=prompt_encoder_config,
|
|
mask_decoder_config=mask_decoder_config,
|
|
memory_attention_config=memory_attention_config,
|
|
memory_encoder_config=memory_encoder_config,
|
|
image_size=self.image_size,
|
|
)
|
|
|
|
def create_and_check_model(self, config, pixel_values):
|
|
model = Sam2Model(config=config)
|
|
model.to(torch_device)
|
|
model.eval()
|
|
with torch.no_grad():
|
|
result = model(pixel_values)
|
|
self.parent.assertEqual(result.iou_scores.shape, (self.batch_size, 1, 3))
|
|
self.parent.assertEqual(result.low_res_masks.shape[:3], (self.batch_size, 1, 3))
|
|
|
|
def prepare_config_and_inputs_for_common(self):
|
|
config_and_inputs = self.prepare_config_and_inputs()
|
|
config, pixel_values = config_and_inputs
|
|
inputs_dict = {"pixel_values": pixel_values}
|
|
return config, inputs_dict
|
|
|
|
|
|
@require_torch
|
|
class Sam2ModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase):
|
|
"""
|
|
Here we also overwrite some of the tests of test_modeling_common.py, as SAM's vision encoder does not use input_ids, inputs_embeds,
|
|
attention_mask and seq_length.
|
|
"""
|
|
|
|
all_model_classes = (Sam2Model,) if is_torch_available() else ()
|
|
pipeline_model_mapping = (
|
|
{"feature-extraction": Sam2Model, "mask-generation": Sam2Model} if is_torch_available() else {}
|
|
)
|
|
fx_compatible = False
|
|
test_pruning = False
|
|
test_resize_embeddings = False
|
|
test_head_masking = False
|
|
test_torchscript = False
|
|
_is_composite = True
|
|
|
|
def setUp(self):
|
|
self.model_tester = Sam2ModelTester(self)
|
|
common_properties = ["initializer_range"]
|
|
self.config_tester = ConfigTester(
|
|
self, config_class=Sam2Config, has_text_modality=False, common_properties=common_properties
|
|
)
|
|
|
|
def test_config(self):
|
|
self.config_tester.run_common_tests()
|
|
|
|
@unittest.skip(reason="SAM's vision encoder does not use inputs_embeds")
|
|
def test_inputs_embeds(self):
|
|
pass
|
|
|
|
def test_model_get_set_embeddings(self):
|
|
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
|
|
|
|
for model_class in self.all_model_classes:
|
|
model = model_class(config)
|
|
self.assertIsInstance(model.get_input_embeddings(), (nn.Module))
|
|
x = model.get_output_embeddings()
|
|
self.assertTrue(x is None or isinstance(x, nn.Linear))
|
|
|
|
def test_model(self):
|
|
config_and_inputs = self.model_tester.prepare_config_and_inputs()
|
|
self.model_tester.create_and_check_model(*config_and_inputs)
|
|
|
|
# Overriding as attention shape depends on window_size
|
|
def test_attention_outputs(self):
|
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
|
|
config.return_dict = True
|
|
|
|
for model_class in self.all_model_classes:
|
|
inputs_dict["output_attentions"] = True
|
|
inputs_dict["output_hidden_states"] = False
|
|
config.return_dict = True
|
|
model = model_class._from_config(config, attn_implementation="eager")
|
|
config = model.config
|
|
model.to(torch_device)
|
|
model.eval()
|
|
with torch.no_grad():
|
|
outputs = model(**self._prepare_for_class(inputs_dict, model_class))
|
|
attentions = outputs.vision_attentions
|
|
expected_num_attentions = sum(self.model_tester.stages)
|
|
self.assertEqual(len(attentions), expected_num_attentions)
|
|
|
|
# check that output_attentions also work using config
|
|
del inputs_dict["output_attentions"]
|
|
config.output_attentions = True
|
|
window_size = config.vision_config.window_spec[0]
|
|
out_dim = self.model_tester.hidden_size
|
|
patch_stride = self.model_tester.patch_stride
|
|
num_windows = (
|
|
self.model_tester.batch_size * (self.model_tester.image_size // (window_size * patch_stride)) ** 2
|
|
)
|
|
model = model_class(config)
|
|
model.to(torch_device)
|
|
model.eval()
|
|
with torch.no_grad():
|
|
outputs = model(**self._prepare_for_class(inputs_dict, model_class))
|
|
attentions = outputs.vision_attentions
|
|
self.assertEqual(len(attentions), expected_num_attentions)
|
|
self.assertListEqual(
|
|
list(attentions[0].shape[-4:]),
|
|
[num_windows, window_size, window_size, out_dim],
|
|
)
|
|
|
|
# Check attention is always last and order is fine
|
|
inputs_dict["output_attentions"] = True
|
|
inputs_dict["output_hidden_states"] = True
|
|
model = model_class(config)
|
|
model.to(torch_device)
|
|
model.eval()
|
|
with torch.no_grad():
|
|
outputs = model(**self._prepare_for_class(inputs_dict, model_class))
|
|
attentions = outputs.vision_attentions
|
|
self.assertEqual(len(attentions), expected_num_attentions)
|
|
self.assertListEqual(
|
|
list(attentions[0].shape[-4:]),
|
|
[num_windows, window_size, window_size, out_dim],
|
|
)
|
|
|
|
# Override as Sam2Model has different sub-modules
|
|
@require_torch_sdpa
|
|
def test_sdpa_can_dispatch_composite_models(self):
|
|
"""
|
|
Tests if composite models dispatch correctly on SDPA/eager when requested so when loading the model.
|
|
This tests only by looking at layer names, as usually SDPA layers are called "SDPAAttention".
|
|
In contrast to the above test, this one checks if the "config._attn_implamentation" is a dict after the model
|
|
is loaded, because we manually replicate requested attn implementation on each sub-config when loading.
|
|
See https://github.com/huggingface/transformers/pull/32238 for more info
|
|
|
|
The test tries to cover most general cases of composite models, VLMs with vision and text configs. Any model
|
|
that has a different set of sub-configs has to overwrite this test.
|
|
"""
|
|
if not self.has_attentions:
|
|
self.skipTest(reason="Model architecture does not support attentions")
|
|
|
|
if not self._is_composite:
|
|
self.skipTest(f"{self.all_model_classes[0].__name__} does not support SDPA")
|
|
|
|
for model_class in self.all_model_classes:
|
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
|
|
model = model_class(config)
|
|
|
|
with tempfile.TemporaryDirectory() as tmpdirname:
|
|
model.save_pretrained(tmpdirname)
|
|
model_sdpa = model_class.from_pretrained(tmpdirname, attn_implementation="sdpa")
|
|
model_sdpa = model_sdpa.eval().to(torch_device)
|
|
|
|
vision_encoder_sdpa = getattr(model_sdpa, "vision_encoder")
|
|
mask_decoder_sdpa = getattr(model_sdpa, "mask_decoder")
|
|
|
|
# `None` as it is the requested one which will be assigned to each sub-config
|
|
# Sub-model will dispatch to SDPA if it can (checked below that `SDPA` layers are present)
|
|
self.assertTrue(mask_decoder_sdpa.config._attn_implementation == "sdpa")
|
|
self.assertTrue(vision_encoder_sdpa.config._attn_implementation == "sdpa")
|
|
|
|
model_eager = model_class.from_pretrained(tmpdirname, attn_implementation="eager")
|
|
model_eager = model_eager.eval().to(torch_device)
|
|
self.assertTrue(getattr(model_eager, "mask_decoder").config._attn_implementation == "eager")
|
|
self.assertTrue(getattr(model_eager, "vision_encoder").config._attn_implementation == "eager")
|
|
|
|
for name, submodule in model_eager.named_modules():
|
|
class_name = submodule.__class__.__name__
|
|
if (
|
|
class_name.endswith("Attention")
|
|
and getattr(submodule, "config", None)
|
|
and submodule.config._attn_implementation == "sdpa"
|
|
):
|
|
raise ValueError("The eager model should not have SDPA attention layers")
|
|
|
|
# Override as Sam2Model doesn't have hidden states
|
|
def flash_attn_inference_equivalence(self, attn_implementation: str, padding_side: str):
|
|
r"""
|
|
Tests the equivalence between the eager and flash attention implementations.
|
|
This test is only for inference and runs with `torch_dtype=torch.bfloat16`.
|
|
"""
|
|
if not self.has_attentions:
|
|
self.skipTest(reason="Model architecture does not support attentions")
|
|
|
|
for model_class in self.all_model_classes:
|
|
if (attn_implementation == "flash_attention_2" and not model_class._supports_flash_attn_2) or (
|
|
attn_implementation == "flash_attention_3" and not model_class._supports_flash_attn_3
|
|
):
|
|
self.skipTest(f"{model_class.__name__} does not support {attn_implementation}")
|
|
|
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
|
|
model = model_class(config)
|
|
|
|
with tempfile.TemporaryDirectory() as tmpdirname:
|
|
model.save_pretrained(tmpdirname)
|
|
model_fa = model_class.from_pretrained(
|
|
tmpdirname, torch_dtype=torch.bfloat16, attn_implementation=attn_implementation
|
|
)
|
|
model_fa.to(torch_device)
|
|
|
|
model = model_class.from_pretrained(tmpdirname, torch_dtype=torch.bfloat16)
|
|
model.to(torch_device)
|
|
|
|
dummy_input = inputs_dict[model.main_input_name][:1]
|
|
if dummy_input.dtype in [torch.float32, torch.float16]:
|
|
dummy_input = dummy_input.to(torch.bfloat16)
|
|
|
|
dummy_attention_mask = inputs_dict.get("attention_mask", None)
|
|
|
|
if dummy_attention_mask is not None:
|
|
dummy_attention_mask = dummy_attention_mask[:1]
|
|
if padding_side == "left":
|
|
dummy_attention_mask[:, 1:] = 1
|
|
dummy_attention_mask[:, :1] = 0
|
|
else:
|
|
dummy_attention_mask[:, :-1] = 1
|
|
dummy_attention_mask[:, -1:] = 0
|
|
if model.config.is_encoder_decoder:
|
|
decoder_input_ids = inputs_dict.get("decoder_input_ids", dummy_input)[:1]
|
|
|
|
outputs = model(dummy_input, decoder_input_ids=decoder_input_ids, output_hidden_states=True)
|
|
outputs_fa = model_fa(dummy_input, decoder_input_ids=decoder_input_ids, output_hidden_states=True)
|
|
else:
|
|
outputs = model(dummy_input, output_hidden_states=True)
|
|
outputs_fa = model_fa(dummy_input, output_hidden_states=True)
|
|
|
|
logits = outputs.vision_hidden_states[-1]
|
|
logits_fa = outputs_fa.vision_hidden_states[-1]
|
|
|
|
assert torch.allclose(logits_fa, logits, atol=4e-2, rtol=4e-2)
|
|
|
|
if model.config.is_encoder_decoder:
|
|
other_inputs = {
|
|
"decoder_input_ids": decoder_input_ids,
|
|
"decoder_attention_mask": dummy_attention_mask,
|
|
"output_hidden_states": True,
|
|
}
|
|
if dummy_attention_mask is not None:
|
|
other_inputs["attention_mask"] = dummy_attention_mask
|
|
|
|
outputs = model(dummy_input, **other_inputs)
|
|
outputs_fa = model_fa(dummy_input, **other_inputs)
|
|
else:
|
|
other_inputs = {
|
|
"output_hidden_states": True,
|
|
}
|
|
if dummy_attention_mask is not None:
|
|
other_inputs["attention_mask"] = dummy_attention_mask
|
|
|
|
outputs = model(dummy_input, **other_inputs)
|
|
outputs_fa = model_fa(dummy_input, **other_inputs)
|
|
|
|
logits = outputs.vision_hidden_states[-1]
|
|
logits_fa = outputs_fa.vision_hidden_states[-1]
|
|
|
|
if padding_side == "left":
|
|
assert torch.allclose(logits_fa[1:], logits[1:], atol=4e-2, rtol=4e-2)
|
|
|
|
# check with inference + dropout
|
|
model.train()
|
|
_ = model_fa(dummy_input, **other_inputs)
|
|
else:
|
|
assert torch.allclose(logits_fa[:-1], logits[:-1], atol=4e-2, rtol=4e-2)
|
|
|
|
# Override as diffence slightly higher than the threshold
|
|
def test_batching_equivalence(self, atol=5e-4, rtol=5e-4):
|
|
super().test_batching_equivalence(atol=atol, rtol=rtol)
|
|
|
|
@unittest.skip(reason="Sam2Model does not support training")
|
|
def test_retain_grad_hidden_states_attentions(self):
|
|
pass
|
|
|
|
@unittest.skip(reason="Hidden_states is tested in sub modules tests")
|
|
def test_hidden_states_output(self):
|
|
pass
|
|
|
|
# @slow
|
|
# def test_model_from_pretrained(self):
|
|
# model_name = "facebook/sam-vit-huge"
|
|
# model = SamModel.from_pretrained(model_name)
|
|
# self.assertIsNotNone(model)
|
|
|
|
@require_torch_sdpa
|
|
def test_sdpa_can_compile_dynamic(self):
|
|
self.skipTest(reason="SAM2 model can't be compiled dynamic yet")
|
|
|
|
|
|
def prepare_image():
|
|
img_url = "https://huggingface.co/datasets/hf-internal-testing/sam2-fixtures/resolve/main/truck.jpg"
|
|
raw_image = Image.open(requests.get(img_url, stream=True).raw).convert("RGB")
|
|
return raw_image
|
|
|
|
|
|
def prepare_dog_img():
|
|
img_url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/model_doc/dog-sam.png"
|
|
raw_image = Image.open(requests.get(img_url, stream=True).raw).convert("RGB")
|
|
return raw_image
|
|
|
|
|
|
def prepare_video():
|
|
video_url = "https://huggingface.co/datasets/hf-internal-testing/sam2-fixtures/resolve/main/bedroom.mp4"
|
|
raw_video, _ = load_video(video_url)
|
|
return raw_video
|
|
|
|
|
|
@slow
|
|
class Sam2ModelIntegrationTest(unittest.TestCase):
|
|
def setUp(self):
|
|
super().setUp()
|
|
self.model = Sam2Model.from_pretrained("../sam2_hf_implem/sam2_tiny_hf", attn_implementation="sdpa")
|
|
self.processor = Sam2Processor.from_pretrained("../sam2_hf_implem/sam2_tiny_hf")
|
|
self.model.to(torch_device)
|
|
self.model.eval()
|
|
|
|
def tearDown(self):
|
|
super().tearDown()
|
|
# clean-up as much as possible GPU memory occupied by PyTorch
|
|
gc.collect()
|
|
backend_empty_cache(torch_device)
|
|
|
|
def test_inference_mask_generation_no_point(self):
|
|
pass
|
|
|
|
# model = Sam2Model.from_pretrained("facebook/sam2-vit-base")
|
|
|
|
# processor = SamProcessor.from_pretrained("facebook/sam2-vit-base")
|
|
|
|
# model.to(torch_device)
|
|
# model.eval()
|
|
|
|
# raw_image = prepare_image()
|
|
# inputs = processor(images=raw_image, return_tensors="pt").to(torch_device)
|
|
|
|
# with torch.no_grad():
|
|
# outputs = model(**inputs)
|
|
# scores = outputs.iou_scores.squeeze()
|
|
# masks = outputs.pred_masks[0, 0, 0, 0, :3]
|
|
# self.assertTrue(torch.allclose(scores[-1], torch.tensor(0.4515), atol=2e-4))
|
|
# self.assertTrue(torch.allclose(masks, torch.tensor([-4.1800, -3.4948, -3.4481]).to(torch_device), atol=2e-4))
|
|
|
|
def test_inference_mask_generation_one_point_multimask(self):
|
|
raw_image = prepare_image()
|
|
input_points = [[[[500, 375]]]]
|
|
input_labels = [[[1]]]
|
|
|
|
inputs = self.processor(
|
|
images=raw_image, input_points=input_points, input_labels=input_labels, return_tensors="pt"
|
|
).to(torch_device)
|
|
# to_tensor = ToTensor()
|
|
# transforms = torch.jit.script(
|
|
# nn.Sequential(
|
|
# Resize((1024, 1024)),
|
|
# Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
|
|
# )
|
|
# )
|
|
# inputs["pixel_values"] = transforms(to_tensor(raw_image)).unsqueeze(0).to("cuda")
|
|
|
|
with torch.no_grad():
|
|
outputs = self.model(**inputs)
|
|
self.assertEqual(outputs.iou_scores.shape, (1, 1, 3))
|
|
self.assertEqual(outputs.low_res_masks.shape, (1, 1, 3, 256, 256))
|
|
sorted_indices = torch.argsort(outputs.iou_scores.squeeze(), descending=True)
|
|
scores = outputs.iou_scores.squeeze()[sorted_indices]
|
|
masks_logits = outputs.low_res_masks.squeeze()[sorted_indices][0, :3, :3]
|
|
|
|
torch.testing.assert_close(
|
|
scores, torch.tensor([0.9546, 0.4937, 0.0428]).to(torch_device), atol=1e-4, rtol=1e-4
|
|
)
|
|
torch.testing.assert_close(
|
|
masks_logits,
|
|
torch.tensor(
|
|
[[-25.0963, -41.5728, -30.8723], [-34.7112, -30.7988, -36.4013], [-25.3061, -37.4575, -33.1899]]
|
|
).to(torch_device),
|
|
atol=1e-4,
|
|
rtol=1e-4,
|
|
)
|
|
|
|
def test_inference_mask_generation_one_point_no_multimask(self):
|
|
raw_image = prepare_image()
|
|
input_points = [[[[500, 375]]]]
|
|
input_labels = [[[1]]]
|
|
|
|
inputs = self.processor(
|
|
images=raw_image, input_points=input_points, input_labels=input_labels, return_tensors="pt"
|
|
).to(torch_device)
|
|
|
|
with torch.no_grad():
|
|
outputs = self.model(**inputs, multimask_output=False)
|
|
self.assertEqual(outputs.iou_scores.shape, (1, 1, 1))
|
|
self.assertEqual(outputs.low_res_masks.shape, (1, 1, 1, 256, 256))
|
|
scores = outputs.iou_scores.squeeze((0, 1))
|
|
masks_logits = outputs.low_res_masks.squeeze((0, 1))[0, :3, :3]
|
|
|
|
torch.testing.assert_close(scores, torch.tensor([0.9366]).to(torch_device), atol=1e-4, rtol=1e-4)
|
|
torch.testing.assert_close(
|
|
masks_logits,
|
|
torch.tensor(
|
|
[[-7.1674, -13.4459, -9.6908], [-10.6038, -9.7242, -12.4059], [-7.4478, -12.4997, -10.5906]]
|
|
).to(torch_device),
|
|
atol=1e-4,
|
|
rtol=1e-4,
|
|
)
|
|
|
|
def test_inference_mask_generation_video_one_point(self):
|
|
pass
|
|
# raw_video = prepare_video()
|
|
# self.processor.init_state(video_path="./videos/bedroom_light")
|
|
|
|
# inputs = processor.add_new_points_or_box(
|
|
# frame_idx=0,
|
|
# obj_id=1,
|
|
# points=[[[[210, 350]]]],
|
|
# labels=[[[1]]],
|
|
# )
|
|
|
|
# def test_inference_mask_generation_one_point_one_bb(self):
|
|
# model = Sam2Model.from_pretrained("../sam2_hf_implem/sam2_tiny_hf")
|
|
# processor = SamProcessor.from_pretrained("../sam2_hf_implem/sam2_tiny_hf")
|
|
|
|
# model.to(torch_device)
|
|
# model.eval()
|
|
|
|
# raw_image = prepare_image()
|
|
# input_boxes = [[[[650, 900, 1000, 1250]]]]
|
|
# input_points = [[[[820, 1080]]]]
|
|
|
|
# inputs = processor(
|
|
# images=raw_image, input_boxes=input_boxes, input_points=input_points, return_tensors="pt"
|
|
# ).to(torch_device)
|
|
|
|
# with torch.no_grad():
|
|
# outputs = model(**inputs)
|
|
# scores = outputs.iou_scores.squeeze()
|
|
# masks = outputs.pred_masks[0, 0, 0, 0, :3]
|
|
# self.assertTrue(torch.allclose(scores[-1], torch.tensor(0.9566), atol=2e-4))
|
|
# self.assertTrue(
|
|
# torch.allclose(masks, torch.tensor([-12.7729, -12.3665, -12.6061]).to(torch_device), atol=2e-4)
|
|
# )
|
|
|
|
def test_inference_mask_generation_batched_points_batched_images(self):
|
|
raw_image1 = prepare_image()
|
|
raw_image2 = prepare_dog_img()
|
|
input_points = [[[[500, 375], [10, 10]]], [[[770, 200], [730, 120]]]]
|
|
input_labels = [[[1, -10]], [[1, 0]]]
|
|
|
|
inputs = self.processor(
|
|
images=[raw_image1, raw_image2], input_points=input_points, input_labels=input_labels, return_tensors="pt"
|
|
).to(torch_device)
|
|
|
|
with torch.no_grad():
|
|
outputs = self.model(**inputs)
|
|
self.assertEqual(outputs.iou_scores.shape, (2, 1, 3))
|
|
self.assertEqual(outputs.low_res_masks.shape, (2, 1, 3, 256, 256))
|
|
|
|
sorted_indices = torch.argsort(outputs.iou_scores[0].squeeze(), descending=True)
|
|
scores1 = outputs.iou_scores[0].squeeze()[sorted_indices]
|
|
masks_logits1 = outputs.low_res_masks[0].squeeze()[sorted_indices][0, :3, :3]
|
|
sorted_indices = torch.argsort(outputs.iou_scores[1].squeeze(), descending=True)
|
|
scores2 = outputs.iou_scores[1].squeeze()[sorted_indices]
|
|
masks_logits2 = outputs.low_res_masks[1].squeeze()[sorted_indices][0, :3, :3]
|
|
|
|
torch.testing.assert_close(
|
|
scores1, torch.tensor([0.9584, 0.4898, 0.0445]).to(torch_device), atol=1e-4, rtol=1e-4
|
|
)
|
|
torch.testing.assert_close(
|
|
masks_logits1,
|
|
torch.tensor(
|
|
[[-22.4127, -37.7623, -27.7642], [-31.0563, -27.6730, -32.6308], [-22.4559, -33.8773, -29.5238]]
|
|
).to(torch_device),
|
|
atol=1e-4,
|
|
rtol=1e-4,
|
|
)
|
|
|
|
torch.testing.assert_close(
|
|
scores2, torch.tensor([0.9504, 0.8117, 0.7426]).to(torch_device), atol=1e-4, rtol=1e-4
|
|
)
|
|
torch.testing.assert_close(
|
|
masks_logits2,
|
|
torch.tensor(
|
|
[[-13.1202, -17.3222, -14.9687], [-16.2375, -12.7737, -17.6353], [-13.5025, -17.1528, -15.6627]]
|
|
).to(torch_device),
|
|
atol=1e-4,
|
|
rtol=1e-4,
|
|
)
|
|
|
|
# def test_inference_mask_generation_one_point_one_bb_zero(self):
|
|
# model = Sam2Model.from_pretrained("facebook/sam2-vit-base")
|
|
# processor = SamProcessor.from_pretrained("facebook/sam2-vit-base")
|
|
|
|
# model.to(torch_device)
|
|
# model.eval()
|
|
|
|
# raw_image = prepare_image()
|
|
# input_boxes = [[[620, 900, 1000, 1255]]]
|
|
# input_points = [[[820, 1080]]]
|
|
# labels = [[0]]
|
|
|
|
# inputs = processor(
|
|
# images=raw_image,
|
|
# input_boxes=input_boxes,
|
|
# input_points=input_points,
|
|
# input_labels=labels,
|
|
# return_tensors="pt",
|
|
# ).to(torch_device)
|
|
|
|
# with torch.no_grad():
|
|
# outputs = model(**inputs)
|
|
# scores = outputs.iou_scores.squeeze()
|
|
|
|
# self.assertTrue(torch.allclose(scores[-1], torch.tensor(0.7894), atol=1e-4))
|
|
|
|
# def test_inference_mask_generation_two_points_batched(self):
|
|
# model = Sam2Model.from_pretrained("facebook/sam2-vit-base")
|
|
# processor = SamProcessor.from_pretrained("facebook/sam2-vit-base")
|
|
|
|
# model.to(torch_device)
|
|
# model.eval()
|
|
|
|
# raw_image = prepare_image()
|
|
|
|
# input_points = [[[400, 650], [800, 650]], [[400, 650]]]
|
|
# input_labels = [[1, 1], [1]]
|
|
|
|
# inputs = processor(
|
|
# images=[raw_image, raw_image], input_points=input_points, input_labels=input_labels, return_tensors="pt"
|
|
# ).to(torch_device)
|
|
|
|
# with torch.no_grad():
|
|
# outputs = model(**inputs)
|
|
# scores = outputs.iou_scores.squeeze()
|
|
# self.assertTrue(torch.allclose(scores[0][-1], torch.tensor(0.9762), atol=1e-4))
|
|
# self.assertTrue(torch.allclose(scores[1][-1], torch.tensor(0.9637), atol=1e-4))
|
|
|
|
# def test_inference_mask_generation_one_box(self):
|
|
# model = Sam2Model.from_pretrained("facebook/sam2-vit-base")
|
|
# processor = SamProcessor.from_pretrained("facebook/sam2-vit-base")
|
|
|
|
# model.to(torch_device)
|
|
# model.eval()
|
|
|
|
# raw_image = prepare_image()
|
|
|
|
# input_boxes = [[[75, 275, 1725, 850]]]
|
|
|
|
# inputs = processor(images=raw_image, input_boxes=input_boxes, return_tensors="pt").to(torch_device)
|
|
|
|
# with torch.no_grad():
|
|
# outputs = model(**inputs)
|
|
# scores = outputs.iou_scores.squeeze()
|
|
# self.assertTrue(torch.allclose(scores[-1], torch.tensor(0.7937), atol=1e-4))
|
|
|
|
# def test_inference_mask_generation_batched_image_one_point(self):
|
|
# model = Sam2Model.from_pretrained("facebook/sam2-vit-base")
|
|
# processor = SamProcessor.from_pretrained("facebook/sam2-vit-base")
|
|
|
|
# model.to(torch_device)
|
|
# model.eval()
|
|
|
|
# raw_image = prepare_image()
|
|
# raw_dog_image = prepare_dog_img()
|
|
|
|
# input_points = [[[820, 1080]], [[220, 470]]]
|
|
|
|
# inputs = processor(images=[raw_image, raw_dog_image], input_points=input_points, return_tensors="pt").to(
|
|
# torch_device
|
|
# )
|
|
|
|
# with torch.no_grad():
|
|
# outputs = model(**inputs)
|
|
# scores_batched = outputs.iou_scores.squeeze()
|
|
|
|
# input_points = [[[220, 470]]]
|
|
|
|
# inputs = processor(images=raw_dog_image, input_points=input_points, return_tensors="pt").to(torch_device)
|
|
|
|
# with torch.no_grad():
|
|
# outputs = model(**inputs)
|
|
# scores_single = outputs.iou_scores.squeeze()
|
|
# self.assertTrue(torch.allclose(scores_batched[1, :], scores_single, atol=1e-4))
|
|
|
|
# def test_inference_mask_generation_two_points_point_batch(self):
|
|
# model = Sam2Model.from_pretrained("facebook/sam2-vit-base")
|
|
# processor = SamProcessor.from_pretrained("facebook/sam2-vit-base")
|
|
|
|
# model.to(torch_device)
|
|
# model.eval()
|
|
|
|
# raw_image = prepare_image()
|
|
|
|
# input_points = torch.Tensor([[[400, 650]], [[220, 470]]]).cpu() # fmt: skip
|
|
|
|
# input_points = input_points.unsqueeze(0)
|
|
|
|
# inputs = processor(raw_image, input_points=input_points, return_tensors="pt").to(torch_device)
|
|
|
|
# with torch.no_grad():
|
|
# outputs = model(**inputs)
|
|
|
|
# iou_scores = outputs.iou_scores.cpu()
|
|
# self.assertTrue(iou_scores.shape == (1, 2, 3))
|
|
# torch.testing.assert_close(
|
|
# iou_scores, torch.tensor([[[0.9105, 0.9825, 0.9675], [0.7646, 0.7943, 0.7774]]]), atol=1e-4, rtol=1e-4
|
|
# )
|
|
|
|
# def test_inference_mask_generation_three_boxes_point_batch(self):
|
|
# model = Sam2Model.from_pretrained("facebook/sam2-vit-base")
|
|
# processor = SamProcessor.from_pretrained("facebook/sam2-vit-base")
|
|
|
|
# model.to(torch_device)
|
|
# model.eval()
|
|
|
|
# raw_image = prepare_image()
|
|
|
|
# # fmt: off
|
|
# input_boxes = torch.Tensor([[[620, 900, 1000, 1255]], [[75, 275, 1725, 850]], [[75, 275, 1725, 850]]]).cpu()
|
|
# EXPECTED_IOU = torch.tensor([[[0.9773, 0.9881, 0.9522],
|
|
# [0.5996, 0.7661, 0.7937],
|
|
# [0.5996, 0.7661, 0.7937]]])
|
|
# # fmt: on
|
|
# input_boxes = input_boxes.unsqueeze(0)
|
|
|
|
# inputs = processor(raw_image, input_boxes=input_boxes, return_tensors="pt").to(torch_device)
|
|
|
|
# with torch.no_grad():
|
|
# outputs = model(**inputs)
|
|
|
|
# iou_scores = outputs.iou_scores.cpu()
|
|
# self.assertTrue(iou_scores.shape == (1, 3, 3))
|
|
# torch.testing.assert_close(iou_scores, EXPECTED_IOU, atol=1e-4, rtol=1e-4)
|
|
|
|
# def test_dummy_pipeline_generation(self):
|
|
# generator = pipeline("mask-generation", model="facebook/sam2-vit-base", device=torch_device)
|
|
# raw_image = prepare_image()
|
|
|
|
# _ = generator(raw_image, points_per_batch=64)
|