transformers/examples/benchmarking/plot_csv_file.py
Patrick von Platen 96f57c9ccb
[Benchmark] Memory benchmark utils (#4198)
* improve memory benchmarking

* correct typo

* fix current memory

* check torch memory allocated

* better pytorch function

* add total cached gpu memory

* add total gpu required

* improve torch gpu usage

* update memory usage

* finalize memory tracing

* save intermediate benchmark class

* fix conflict

* improve benchmark

* improve benchmark

* finalize

* make style

* improve benchmarking

* correct typo

* make train function more flexible

* fix csv save

* better repr of bytes

* better print

* fix __repr__ bug

* finish plot script

* rename plot file

* delete csv and small improvements

* fix in plot

* fix in plot

* correct usage of timeit

* remove redundant line

* remove redundant line

* fix bug

* add hf parser tests

* add versioning and platform info

* make style

* add gpu information

* ensure backward compatibility

* finish adding all tests

* Update src/transformers/benchmark/benchmark_args.py

Co-authored-by: Lysandre Debut <lysandre@huggingface.co>

* Update src/transformers/benchmark/benchmark_args_utils.py

Co-authored-by: Lysandre Debut <lysandre@huggingface.co>

* delete csv files

* fix isort ordering

* add out of memory handling

* add better train memory handling

Co-authored-by: Lysandre Debut <lysandre@huggingface.co>
2020-05-27 23:22:16 +02:00

114 lines
4.1 KiB
Python

import csv
from collections import defaultdict
from dataclasses import dataclass, field
from typing import Optional
import numpy as np
import matplotlib.pyplot as plt
from transformers import HfArgumentParser
@dataclass
class PlotArguments:
"""
Arguments pertaining to which model/config/tokenizer we are going to fine-tune, or train from scratch.
"""
csv_file: str = field(metadata={"help": "The csv file to plot."},)
plot_along_batch: bool = field(
default=False,
metadata={"help": "Whether to plot along batch size or sequence lengh. Defaults to sequence length."},
)
is_time: bool = field(
default=False,
metadata={"help": "Whether the csv file has time results or memory results. Defaults to memory results."},
)
is_train: bool = field(
default=False,
metadata={
"help": "Whether the csv file has training results or inference results. Defaults to inference results."
},
)
figure_png_file: Optional[str] = field(
default=None, metadata={"help": "Filename under which the plot will be saved. If unused no plot is saved."},
)
class Plot:
def __init__(self, args):
self.args = args
self.result_dict = defaultdict(lambda: dict(bsz=[], seq_len=[], result={}))
with open(self.args.csv_file, newline="") as csv_file:
reader = csv.DictReader(csv_file)
for row in reader:
model_name = row["model"]
self.result_dict[model_name]["bsz"].append(int(row["batch_size"]))
self.result_dict[model_name]["seq_len"].append(int(row["sequence_length"]))
self.result_dict[model_name]["result"][(int(row["batch_size"]), int(row["sequence_length"]))] = row[
"result"
]
def plot(self):
fig, ax = plt.subplots()
title_str = "Time usage" if self.args.is_time else "Memory usage"
title_str = title_str + " for training" if self.args.is_train else title_str + " for inference"
for model_name in self.result_dict.keys():
batch_sizes = sorted(list(set(self.result_dict[model_name]["bsz"])))
sequence_lengths = sorted(list(set(self.result_dict[model_name]["seq_len"])))
results = self.result_dict[model_name]["result"]
(x_axis_array, inner_loop_array) = (
(batch_sizes, sequence_lengths) if self.args.plot_along_batch else (sequence_lengths, batch_sizes)
)
plt.xlim(min(x_axis_array), max(x_axis_array))
for inner_loop_value in inner_loop_array:
if self.args.plot_along_batch:
y_axis_array = np.asarray([results[(x, inner_loop_value)] for x in x_axis_array], dtype=np.int)
else:
y_axis_array = np.asarray([results[(inner_loop_value, x)] for x in x_axis_array], dtype=np.float32)
ax.set_xscale("log", basex=2)
ax.set_yscale("log", basey=10)
(x_axis_label, inner_loop_label) = (
("batch_size", "sequence_length in #tokens")
if self.args.plot_along_batch
else ("sequence_length in #tokens", "batch_size")
)
x_axis_array = np.asarray(x_axis_array, np.int)
plt.scatter(x_axis_array, y_axis_array, label=f"{model_name} - {inner_loop_label}: {inner_loop_value}")
plt.plot(x_axis_array, y_axis_array, "--")
title_str += f" {model_name} vs."
title_str = title_str[:-4]
y_axis_label = "Time in s" if self.args.is_time else "Memory in MB"
# plot
plt.title(title_str)
plt.xlabel(x_axis_label)
plt.ylabel(y_axis_label)
plt.legend()
if self.args.figure_png_file is not None:
plt.savefig(self.args.figure_png_file)
else:
plt.show()
def main():
parser = HfArgumentParser(PlotArguments)
plot_args = parser.parse_args_into_dataclasses()[0]
plot = Plot(args=plot_args)
plot.plot()
if __name__ == "__main__":
main()