mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-25 23:38:59 +06:00

* Adding Flax XLM-RoBERTa * Add Flax to __init__ * Adding doc and dummy objects * Add tests * Add Flax XLM-R models autodoc * Fix tests * Add Flask XLM-RoBERTa to TEST_FILES_WITH_NO_COMMON_TESTS * Update src/transformers/models/xlm_roberta/modeling_flax_xlm_roberta.py Co-authored-by: Suraj Patil <surajp815@gmail.com> * Update tests/xlm_roberta/test_modeling_flax_xlm_roberta.py Co-authored-by: Suraj Patil <surajp815@gmail.com> * Update tests/xlm_roberta/test_modeling_flax_xlm_roberta.py Co-authored-by: Suraj Patil <surajp815@gmail.com> * Remove test on large Flask XLM-RoBERTa * Add tokenizer to the test Co-authored-by: Suraj Patil <surajp815@gmail.com>
48 lines
1.8 KiB
Python
48 lines
1.8 KiB
Python
# coding=utf-8
|
|
# Copyright 2022 The HuggingFace Team. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
|
|
import unittest
|
|
|
|
from transformers import AutoTokenizer, is_flax_available
|
|
from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, slow
|
|
|
|
|
|
if is_flax_available():
|
|
import jax.numpy as jnp
|
|
from transformers import FlaxXLMRobertaModel
|
|
|
|
|
|
@require_sentencepiece
|
|
@require_tokenizers
|
|
@require_flax
|
|
class FlaxXLMRobertaModelIntegrationTest(unittest.TestCase):
|
|
@slow
|
|
def test_flax_xlm_roberta_base(self):
|
|
model = FlaxXLMRobertaModel.from_pretrained("xlm-roberta-base")
|
|
tokenizer = AutoTokenizer.from_pretrained("xlm-roberta-base")
|
|
text = "The dog is cute and lives in the garden house"
|
|
input_ids = jnp.array([tokenizer.encode(text)])
|
|
|
|
expected_output_shape = (1, 12, 768) # batch_size, sequence_length, embedding_vector_dim
|
|
expected_output_values_last_dim = jnp.array(
|
|
[[-0.0101, 0.1218, -0.0803, 0.0801, 0.1327, 0.0776, -0.1215, 0.2383, 0.3338, 0.3106, 0.0300, 0.0252]]
|
|
)
|
|
|
|
output = model(input_ids)["last_hidden_state"]
|
|
self.assertEqual(output.shape, expected_output_shape)
|
|
# compare the actual values for a slice of last dim
|
|
self.assertTrue(jnp.allclose(output[:, :, -1], expected_output_values_last_dim, atol=1e-3))
|