transformers/tests/xlm_roberta/test_modeling_flax_xlm_roberta.py
Javier de la Rosa 01485ceec3
Add missing support for Flax XLM-RoBERTa (#15900)
* Adding Flax XLM-RoBERTa

* Add Flax to __init__

* Adding doc and dummy objects

* Add tests

* Add Flax XLM-R models autodoc

* Fix tests

* Add Flask XLM-RoBERTa to TEST_FILES_WITH_NO_COMMON_TESTS

* Update src/transformers/models/xlm_roberta/modeling_flax_xlm_roberta.py

Co-authored-by: Suraj Patil <surajp815@gmail.com>

* Update tests/xlm_roberta/test_modeling_flax_xlm_roberta.py

Co-authored-by: Suraj Patil <surajp815@gmail.com>

* Update tests/xlm_roberta/test_modeling_flax_xlm_roberta.py

Co-authored-by: Suraj Patil <surajp815@gmail.com>

* Remove test on large Flask XLM-RoBERTa

* Add tokenizer to the test

Co-authored-by: Suraj Patil <surajp815@gmail.com>
2022-03-04 14:36:28 +01:00

48 lines
1.8 KiB
Python

# coding=utf-8
# Copyright 2022 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
from transformers import AutoTokenizer, is_flax_available
from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, slow
if is_flax_available():
import jax.numpy as jnp
from transformers import FlaxXLMRobertaModel
@require_sentencepiece
@require_tokenizers
@require_flax
class FlaxXLMRobertaModelIntegrationTest(unittest.TestCase):
@slow
def test_flax_xlm_roberta_base(self):
model = FlaxXLMRobertaModel.from_pretrained("xlm-roberta-base")
tokenizer = AutoTokenizer.from_pretrained("xlm-roberta-base")
text = "The dog is cute and lives in the garden house"
input_ids = jnp.array([tokenizer.encode(text)])
expected_output_shape = (1, 12, 768) # batch_size, sequence_length, embedding_vector_dim
expected_output_values_last_dim = jnp.array(
[[-0.0101, 0.1218, -0.0803, 0.0801, 0.1327, 0.0776, -0.1215, 0.2383, 0.3338, 0.3106, 0.0300, 0.0252]]
)
output = model(input_ids)["last_hidden_state"]
self.assertEqual(output.shape, expected_output_shape)
# compare the actual values for a slice of last dim
self.assertTrue(jnp.allclose(output[:, :, -1], expected_output_values_last_dim, atol=1e-3))