transformers/tests/test_modeling_vision_encoder_decoder.py
Yih-Dar 95b3ec3bc9
Add FlaxVisionEncoderDecoderModel (#13359)
* Start the work on FlaxVisionEncoderDecoderModel

* Add FlaxVisionEncoderDecoderModel

* Add VisionEncoderDecoderConfig

* Make FlaxVisionEncoderDecoderModel visible to transformers

* Add test

* Fix wrong getattr usage

* Fix tests

* Add FlaxAutoModelForVision2Seq

* Expose FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING

* clean-up

* add integration test

* update expected logits

* update expected scores

* Add ViT2GPT2ModelIntegrationTest + some cleaning

* Add projection layer + PT/Flax equivalence tests

* Fix import

* minor changes

* make test slow again

* Apply suggestions

* Add modeling_flax_vision_encoder_decoder to _ignore_modules in get_model_modules()

* fix copies

* Apply suggestions from code review

Co-authored-by: Suraj Patil <surajp815@gmail.com>

* split long strings in multiple lines

* decoder_input_ids can't be None

* Add back test_configuration_tie

* Remove attention_mask parameter

* fix test - encoder_last_hidden_state should be encoder_outputs.last_hidden_state instead of the projected vector

* Apply suggestions from code review

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Remove more encoder_attention_mask

* remove encoder_attention_mask when calling self.decode (in FlaxVisionEncoderDecoderModule)

* Fix style + pass 1s instead of None as encoder_attention_mask

* fix init_weights

* pass None for encoder_attention_mask

* pass 1s instead of None as encoder_attention_mask

* Fix doc style

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
Co-authored-by: Suraj Patil <surajp815@gmail.com>
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
2021-11-09 15:14:28 +05:30

726 lines
29 KiB
Python

# coding=utf-8
# Copyright 2021 HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import tempfile
import unittest
from datasets import load_dataset
from transformers.file_utils import cached_property, is_torch_available, is_vision_available
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from .test_modeling_bert import BertModelTester
from .test_modeling_common import floats_tensor, ids_tensor, random_attention_mask
from .test_modeling_deit import DeiTModelTester
from .test_modeling_trocr import TrOCRStandaloneDecoderModelTester
from .test_modeling_vit import ViTModelTester
if is_torch_available():
import numpy as np
import torch
from transformers import (
AutoTokenizer,
BertLMHeadModel,
DeiTModel,
TrOCRForCausalLM,
VisionEncoderDecoderConfig,
VisionEncoderDecoderModel,
ViTModel,
)
from transformers.modeling_outputs import BaseModelOutput
from transformers.models.vit.modeling_vit import to_2tuple
if is_vision_available():
from PIL import Image
from transformers import TrOCRProcessor, ViTFeatureExtractor
@require_torch
class EncoderDecoderMixin:
def get_encoder_decoder_model(self, config, decoder_config):
pass
def prepare_config_and_inputs(self):
pass
def get_pretrained_model_and_inputs(self):
pass
def check_encoder_decoder_model_from_pretrained_configs(
self,
config,
attention_mask,
decoder_config,
decoder_input_ids,
decoder_attention_mask,
pixel_values=None,
**kwargs
):
encoder_decoder_config = VisionEncoderDecoderConfig.from_encoder_decoder_configs(config, decoder_config)
self.assertTrue(encoder_decoder_config.decoder.is_decoder)
enc_dec_model = VisionEncoderDecoderModel(encoder_decoder_config)
enc_dec_model.to(torch_device)
enc_dec_model.eval()
self.assertTrue(enc_dec_model.config.is_encoder_decoder)
outputs_encoder_decoder = enc_dec_model(
pixel_values=pixel_values,
attention_mask=attention_mask,
decoder_input_ids=decoder_input_ids,
decoder_attention_mask=decoder_attention_mask,
)
self.assertEqual(
outputs_encoder_decoder["logits"].shape, (decoder_input_ids.shape + (decoder_config.vocab_size,))
)
def check_encoder_decoder_model(
self,
config,
attention_mask,
decoder_config,
decoder_input_ids,
decoder_attention_mask,
pixel_values=None,
**kwargs
):
encoder_model, decoder_model = self.get_encoder_decoder_model(config, decoder_config)
enc_dec_model = VisionEncoderDecoderModel(encoder=encoder_model, decoder=decoder_model)
self.assertTrue(enc_dec_model.config.decoder.is_decoder)
self.assertTrue(enc_dec_model.config.decoder.add_cross_attention)
self.assertTrue(enc_dec_model.config.is_encoder_decoder)
enc_dec_model.to(torch_device)
outputs_encoder_decoder = enc_dec_model(
pixel_values=pixel_values,
attention_mask=attention_mask,
decoder_input_ids=decoder_input_ids,
decoder_attention_mask=decoder_attention_mask,
output_hidden_states=True,
)
self.assertEqual(
outputs_encoder_decoder["logits"].shape, (decoder_input_ids.shape + (decoder_config.vocab_size,))
)
encoder_outputs = BaseModelOutput(last_hidden_state=outputs_encoder_decoder.encoder_hidden_states[-1])
outputs_encoder_decoder = enc_dec_model(
encoder_outputs=encoder_outputs,
attention_mask=attention_mask,
decoder_input_ids=decoder_input_ids,
decoder_attention_mask=decoder_attention_mask,
)
self.assertEqual(
outputs_encoder_decoder["logits"].shape, (decoder_input_ids.shape + (decoder_config.vocab_size,))
)
def check_encoder_decoder_model_from_pretrained(
self,
config,
attention_mask,
decoder_config,
decoder_input_ids,
decoder_attention_mask,
return_dict,
pixel_values=None,
**kwargs
):
encoder_model, decoder_model = self.get_encoder_decoder_model(config, decoder_config)
kwargs = {"encoder_model": encoder_model, "decoder_model": decoder_model, "return_dict": return_dict}
enc_dec_model = VisionEncoderDecoderModel.from_encoder_decoder_pretrained(**kwargs)
enc_dec_model.to(torch_device)
outputs_encoder_decoder = enc_dec_model(
pixel_values=pixel_values,
attention_mask=attention_mask,
decoder_input_ids=decoder_input_ids,
decoder_attention_mask=decoder_attention_mask,
output_hidden_states=True,
return_dict=True,
)
self.assertEqual(
outputs_encoder_decoder["logits"].shape, (decoder_input_ids.shape + (decoder_config.vocab_size,))
)
def check_save_and_load(
self,
config,
attention_mask,
decoder_config,
decoder_input_ids,
decoder_attention_mask,
pixel_values=None,
**kwargs
):
encoder_model, decoder_model = self.get_encoder_decoder_model(config, decoder_config)
enc_dec_model = VisionEncoderDecoderModel(encoder=encoder_model, decoder=decoder_model)
enc_dec_model.to(torch_device)
enc_dec_model.eval()
with torch.no_grad():
outputs = enc_dec_model(
pixel_values=pixel_values,
attention_mask=attention_mask,
decoder_input_ids=decoder_input_ids,
decoder_attention_mask=decoder_attention_mask,
)
out_2 = outputs[0].cpu().numpy()
out_2[np.isnan(out_2)] = 0
with tempfile.TemporaryDirectory() as tmpdirname:
enc_dec_model.save_pretrained(tmpdirname)
enc_dec_model = VisionEncoderDecoderModel.from_pretrained(tmpdirname)
enc_dec_model.to(torch_device)
after_outputs = enc_dec_model(
pixel_values=pixel_values,
attention_mask=attention_mask,
decoder_input_ids=decoder_input_ids,
decoder_attention_mask=decoder_attention_mask,
)
out_1 = after_outputs[0].cpu().numpy()
out_1[np.isnan(out_1)] = 0
max_diff = np.amax(np.abs(out_1 - out_2))
self.assertLessEqual(max_diff, 1e-5)
def check_save_and_load_encoder_decoder_model(
self,
config,
attention_mask,
decoder_config,
decoder_input_ids,
decoder_attention_mask,
pixel_values=None,
**kwargs
):
encoder_model, decoder_model = self.get_encoder_decoder_model(config, decoder_config)
enc_dec_model = VisionEncoderDecoderModel(encoder=encoder_model, decoder=decoder_model)
enc_dec_model.to(torch_device)
enc_dec_model.eval()
with torch.no_grad():
outputs = enc_dec_model(
pixel_values=pixel_values,
attention_mask=attention_mask,
decoder_input_ids=decoder_input_ids,
decoder_attention_mask=decoder_attention_mask,
)
out_2 = outputs[0].cpu().numpy()
out_2[np.isnan(out_2)] = 0
with tempfile.TemporaryDirectory() as encoder_tmp_dirname, tempfile.TemporaryDirectory() as decoder_tmp_dirname:
enc_dec_model.encoder.save_pretrained(encoder_tmp_dirname)
enc_dec_model.decoder.save_pretrained(decoder_tmp_dirname)
VisionEncoderDecoderModel.from_encoder_decoder_pretrained(
encoder_pretrained_model_name_or_path=encoder_tmp_dirname,
decoder_pretrained_model_name_or_path=decoder_tmp_dirname,
)
after_outputs = enc_dec_model(
pixel_values=pixel_values,
attention_mask=attention_mask,
decoder_input_ids=decoder_input_ids,
decoder_attention_mask=decoder_attention_mask,
)
out_1 = after_outputs[0].cpu().numpy()
out_1[np.isnan(out_1)] = 0
max_diff = np.amax(np.abs(out_1 - out_2))
self.assertLessEqual(max_diff, 1e-5)
def check_encoder_decoder_model_output_attentions(
self,
config,
attention_mask,
decoder_config,
decoder_input_ids,
decoder_attention_mask,
labels=None,
pixel_values=None,
**kwargs
):
# make the decoder inputs a different shape from the encoder inputs to harden the test
decoder_input_ids = decoder_input_ids[:, :-1]
decoder_attention_mask = decoder_attention_mask[:, :-1]
encoder_model, decoder_model = self.get_encoder_decoder_model(config, decoder_config)
enc_dec_model = VisionEncoderDecoderModel(encoder=encoder_model, decoder=decoder_model)
enc_dec_model.to(torch_device)
outputs_encoder_decoder = enc_dec_model(
pixel_values=pixel_values,
attention_mask=attention_mask,
decoder_input_ids=decoder_input_ids,
decoder_attention_mask=decoder_attention_mask,
output_attentions=True,
)
encoder_attentions = outputs_encoder_decoder["encoder_attentions"]
self.assertEqual(len(encoder_attentions), config.num_hidden_layers)
# in ViT, the seq_len equals the number of patches + 1 (we add 1 for the [CLS] token)
image_size = to_2tuple(encoder_model.config.image_size)
patch_size = to_2tuple(encoder_model.config.patch_size)
num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
seq_len = num_patches + 1
self.assertEqual(encoder_attentions[0].shape[-3:], (config.num_attention_heads, seq_len, seq_len))
decoder_attentions = outputs_encoder_decoder["decoder_attentions"]
num_decoder_layers = (
decoder_config.num_decoder_layers
if hasattr(decoder_config, "num_decoder_layers")
else decoder_config.num_hidden_layers
)
self.assertEqual(len(decoder_attentions), num_decoder_layers)
self.assertEqual(
decoder_attentions[0].shape[-3:],
(decoder_config.num_attention_heads, decoder_input_ids.shape[-1], decoder_input_ids.shape[-1]),
)
cross_attentions = outputs_encoder_decoder["cross_attentions"]
self.assertEqual(len(cross_attentions), num_decoder_layers)
cross_attention_input_seq_len = decoder_input_ids.shape[-1]
self.assertEqual(
cross_attentions[0].shape[-3:],
(decoder_config.num_attention_heads, cross_attention_input_seq_len, seq_len),
)
def check_encoder_decoder_model_generate(self, config, decoder_config, pixel_values=None, **kwargs):
encoder_model, decoder_model = self.get_encoder_decoder_model(config, decoder_config)
enc_dec_model = VisionEncoderDecoderModel(encoder=encoder_model, decoder=decoder_model)
enc_dec_model.to(torch_device)
inputs = pixel_values
# Bert does not have a bos token id, so use pad_token_id instead
generated_output = enc_dec_model.generate(
inputs, decoder_start_token_id=enc_dec_model.config.decoder.pad_token_id
)
self.assertEqual(generated_output.shape, (inputs.shape[0],) + (decoder_config.max_length,))
def test_encoder_decoder_model(self):
input_ids_dict = self.prepare_config_and_inputs()
self.check_encoder_decoder_model(**input_ids_dict)
def test_encoder_decoder_model_from_pretrained_configs(self):
input_ids_dict = self.prepare_config_and_inputs()
self.check_encoder_decoder_model_from_pretrained_configs(**input_ids_dict)
def test_encoder_decoder_model_from_pretrained(self):
input_ids_dict = self.prepare_config_and_inputs()
self.check_encoder_decoder_model_from_pretrained(**input_ids_dict, return_dict=False)
def test_encoder_decoder_model_from_pretrained_return_dict(self):
input_ids_dict = self.prepare_config_and_inputs()
self.check_encoder_decoder_model_from_pretrained(**input_ids_dict, return_dict=True)
def test_save_and_load_from_pretrained(self):
input_ids_dict = self.prepare_config_and_inputs()
self.check_save_and_load(**input_ids_dict)
def test_save_and_load_from_encoder_decoder_pretrained(self):
input_ids_dict = self.prepare_config_and_inputs()
self.check_save_and_load_encoder_decoder_model(**input_ids_dict)
def test_encoder_decoder_model_output_attentions(self):
input_ids_dict = self.prepare_config_and_inputs()
self.check_encoder_decoder_model_output_attentions(**input_ids_dict)
def test_encoder_decoder_model_generate(self):
input_ids_dict = self.prepare_config_and_inputs()
self.check_encoder_decoder_model_generate(**input_ids_dict)
@slow
def test_real_model_save_load_from_pretrained(self):
model_2, inputs = self.get_pretrained_model_and_inputs()
model_2.to(torch_device)
with torch.no_grad():
outputs = model_2(**inputs)
out_2 = outputs[0].cpu().numpy()
out_2[np.isnan(out_2)] = 0
with tempfile.TemporaryDirectory() as tmp_dirname:
model_2.save_pretrained(tmp_dirname)
model_1 = VisionEncoderDecoderModel.from_pretrained(tmp_dirname)
model_1.to(torch_device)
after_outputs = model_1(**inputs)
out_1 = after_outputs[0].cpu().numpy()
out_1[np.isnan(out_1)] = 0
max_diff = np.amax(np.abs(out_1 - out_2))
self.assertLessEqual(max_diff, 1e-5)
@require_torch
class DeiT2RobertaModelTest(EncoderDecoderMixin, unittest.TestCase):
def get_pretrained_model_and_inputs(self):
model = VisionEncoderDecoderModel.from_encoder_decoder_pretrained(
"hf-internal-testing/tiny-random-deit", "hf-internal-testing/tiny-random-roberta"
)
batch_size = 13
pixel_values = floats_tensor(
[
batch_size,
model.encoder.config.num_channels,
model.encoder.config.image_size,
model.encoder.config.image_size,
]
)
# for DEiT, the sequence length is equal to the number of patches + 2 (for the [CLS] and distillation tokens)
seq_len = (model.encoder.config.image_size // model.encoder.config.patch_size) ** 2 + 2
attention_mask = random_attention_mask([batch_size, seq_len])
decoder_input_ids = ids_tensor([batch_size, 4], model.decoder.config.vocab_size)
decoder_attention_mask = random_attention_mask([batch_size, 4])
inputs = {
"pixel_values": pixel_values,
"attention_mask": attention_mask,
"decoder_input_ids": decoder_input_ids,
"decoder_attention_mask": decoder_attention_mask,
}
return model, inputs
def check_encoder_decoder_model_output_attentions(
self,
config,
attention_mask,
decoder_config,
decoder_input_ids,
decoder_attention_mask,
labels=None,
pixel_values=None,
**kwargs
):
# make the decoder inputs a different shape from the encoder inputs to harden the test
decoder_input_ids = decoder_input_ids[:, :-1]
decoder_attention_mask = decoder_attention_mask[:, :-1]
encoder_model, decoder_model = self.get_encoder_decoder_model(config, decoder_config)
enc_dec_model = VisionEncoderDecoderModel(encoder=encoder_model, decoder=decoder_model)
enc_dec_model.to(torch_device)
outputs_encoder_decoder = enc_dec_model(
pixel_values=pixel_values,
attention_mask=attention_mask,
decoder_input_ids=decoder_input_ids,
decoder_attention_mask=decoder_attention_mask,
output_attentions=True,
)
encoder_attentions = outputs_encoder_decoder["encoder_attentions"]
self.assertEqual(len(encoder_attentions), config.num_hidden_layers)
# in DEiT, the seq_len equals the number of patches + 2 (we add 2 for the [CLS] and distillation tokens)
image_size = to_2tuple(encoder_model.config.image_size)
patch_size = to_2tuple(encoder_model.config.patch_size)
num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
seq_len = num_patches + 2
self.assertEqual(encoder_attentions[0].shape[-3:], (config.num_attention_heads, seq_len, seq_len))
decoder_attentions = outputs_encoder_decoder["decoder_attentions"]
num_decoder_layers = (
decoder_config.num_decoder_layers
if hasattr(decoder_config, "num_decoder_layers")
else decoder_config.num_hidden_layers
)
self.assertEqual(len(decoder_attentions), num_decoder_layers)
self.assertEqual(
decoder_attentions[0].shape[-3:],
(decoder_config.num_attention_heads, decoder_input_ids.shape[-1], decoder_input_ids.shape[-1]),
)
cross_attentions = outputs_encoder_decoder["cross_attentions"]
self.assertEqual(len(cross_attentions), num_decoder_layers)
cross_attention_input_seq_len = decoder_input_ids.shape[-1]
self.assertEqual(
cross_attentions[0].shape[-3:],
(decoder_config.num_attention_heads, cross_attention_input_seq_len, seq_len),
)
def get_encoder_decoder_model(self, config, decoder_config):
encoder_model = DeiTModel(config).eval()
decoder_model = BertLMHeadModel(decoder_config).eval()
return encoder_model, decoder_model
def prepare_config_and_inputs(self):
bert_model_tester = BertModelTester(self)
deit_model_tester = DeiTModelTester(self)
encoder_config_and_inputs = deit_model_tester.prepare_config_and_inputs()
decoder_config_and_inputs = bert_model_tester.prepare_config_and_inputs_for_decoder()
config, pixel_values, _ = encoder_config_and_inputs
input_mask = None # TODO add once attention_mask is supported for vision models
(
decoder_config,
decoder_input_ids,
decoder_token_type_ids,
decoder_input_mask,
decoder_sequence_labels,
decoder_token_labels,
decoder_choice_labels,
encoder_attention_mask,
_,
) = decoder_config_and_inputs
# make sure that cross attention layers are added
decoder_config.add_cross_attention = True
return {
"config": config,
"pixel_values": pixel_values,
"attention_mask": input_mask,
"decoder_config": decoder_config,
"decoder_input_ids": decoder_input_ids,
"decoder_token_type_ids": decoder_token_type_ids,
"decoder_attention_mask": decoder_input_mask,
"decoder_sequence_labels": decoder_sequence_labels,
"decoder_token_labels": decoder_token_labels,
"decoder_choice_labels": decoder_choice_labels,
"labels": decoder_token_labels,
}
@require_torch
class ViT2BertModelTest(EncoderDecoderMixin, unittest.TestCase):
def get_pretrained_model_and_inputs(self):
model = VisionEncoderDecoderModel.from_encoder_decoder_pretrained(
"hf-internal-testing/tiny-random-vit", "hf-internal-testing/tiny-bert"
)
batch_size = 13
pixel_values = floats_tensor(
[
batch_size,
model.encoder.config.num_channels,
model.encoder.config.image_size,
model.encoder.config.image_size,
]
)
# for ViT, the sequence length is equal to the number of patches + 1 (for the [CLS] token)
seq_len = (model.encoder.config.image_size // model.encoder.config.patch_size) ** 2 + 1
attention_mask = random_attention_mask([batch_size, seq_len])
decoder_input_ids = ids_tensor([batch_size, 4], model.decoder.config.vocab_size)
decoder_attention_mask = random_attention_mask([batch_size, 4])
inputs = {
"pixel_values": pixel_values,
"attention_mask": attention_mask,
"decoder_input_ids": decoder_input_ids,
"decoder_attention_mask": decoder_attention_mask,
}
return model, inputs
def get_encoder_decoder_model(self, config, decoder_config):
encoder_model = ViTModel(config).eval()
decoder_model = BertLMHeadModel(decoder_config).eval()
return encoder_model, decoder_model
def prepare_config_and_inputs(self):
vit_model_tester = ViTModelTester(self)
bert_model_tester = BertModelTester(self)
encoder_config_and_inputs = vit_model_tester.prepare_config_and_inputs()
decoder_config_and_inputs = bert_model_tester.prepare_config_and_inputs_for_decoder()
config, pixel_values, _ = encoder_config_and_inputs
input_mask = None # TODO add once attention_mask is supported for vision models
(
decoder_config,
decoder_input_ids,
decoder_token_type_ids,
decoder_input_mask,
decoder_sequence_labels,
decoder_token_labels,
decoder_choice_labels,
encoder_attention_mask,
_,
) = decoder_config_and_inputs
# make sure that cross attention layers are added
decoder_config.add_cross_attention = True
return {
"config": config,
"pixel_values": pixel_values,
"attention_mask": input_mask,
"decoder_config": decoder_config,
"decoder_input_ids": decoder_input_ids,
"decoder_token_type_ids": decoder_token_type_ids,
"decoder_attention_mask": decoder_input_mask,
"decoder_sequence_labels": decoder_sequence_labels,
"decoder_token_labels": decoder_token_labels,
"decoder_choice_labels": decoder_choice_labels,
"labels": decoder_token_labels,
}
@require_torch
class ViT2TrOCR(EncoderDecoderMixin, unittest.TestCase):
def get_encoder_decoder_model(self, config, decoder_config):
encoder_model = ViTModel(config).eval()
decoder_model = TrOCRForCausalLM(decoder_config).eval()
return encoder_model, decoder_model
def prepare_config_and_inputs(self):
model_tester_encoder = ViTModelTester(self, batch_size=13)
model_tester_decoder = TrOCRStandaloneDecoderModelTester(
self, batch_size=13, d_model=32, max_position_embeddings=512
)
encoder_config_and_inputs = model_tester_encoder.prepare_config_and_inputs()
decoder_config_and_inputs = model_tester_decoder.prepare_config_and_inputs()
config, pixel_values, _ = encoder_config_and_inputs
input_mask = None # TODO add once attention_mask is supported for vision models
(decoder_config, decoder_input_ids, decoder_attention_mask, _) = decoder_config_and_inputs
# make sure that cross attention layers are added
decoder_config.add_cross_attention = True
# disable cache for now
decoder_config.use_cache = False
return {
"config": config,
"pixel_values": pixel_values,
"attention_mask": input_mask,
"decoder_config": decoder_config,
"decoder_input_ids": decoder_input_ids,
"decoder_attention_mask": decoder_attention_mask,
}
# there are no published pretrained TrOCR checkpoints for now
def test_real_model_save_load_from_pretrained(self):
pass
@require_vision
@require_torch
class TrOCRModelIntegrationTest(unittest.TestCase):
@cached_property
def default_processor(self):
return TrOCRProcessor.from_pretrained("microsoft/trocr-base-handwritten") if is_vision_available() else None
@slow
def test_inference_handwritten(self):
model = VisionEncoderDecoderModel.from_pretrained("microsoft/trocr-base-handwritten").to(torch_device)
ds = load_dataset("hf-internal-testing/fixtures_ocr", split="test")
image = Image.open(ds[0]["file"]).convert("RGB")
processor = self.default_processor
pixel_values = processor(images=image, return_tensors="pt").pixel_values.to(torch_device)
# forward pass
decoder_input_ids = torch.tensor([[model.config.decoder.decoder_start_token_id]]).to(torch_device)
outputs = model(pixel_values=pixel_values, decoder_input_ids=decoder_input_ids)
logits = outputs.logits
# verify the logits
expected_shape = torch.Size((1, 1, model.decoder.config.vocab_size))
self.assertEqual(outputs.logits.shape, expected_shape)
expected_slice = torch.tensor(
[-1.4502, -4.6683, -0.5347, -2.9291, 9.1435, -3.0571, 8.9764, 1.7560, 8.7358, -1.5311]
).to(torch_device)
self.assertTrue(torch.allclose(logits[0, 0, :10], expected_slice, atol=1e-4))
@slow
def test_inference_printed(self):
model = VisionEncoderDecoderModel.from_pretrained("microsoft/trocr-base-printed").to(torch_device)
ds = load_dataset("hf-internal-testing/fixtures_ocr", split="test")
image = Image.open(ds[1]["file"]).convert("RGB")
processor = self.default_processor
pixel_values = processor(images=image, return_tensors="pt").pixel_values.to(torch_device)
# forward pass
decoder_input_ids = torch.tensor([[model.config.decoder.decoder_start_token_id]]).to(torch_device)
outputs = model(pixel_values=pixel_values, decoder_input_ids=decoder_input_ids)
logits = outputs.logits
# verify the logits
expected_shape = torch.Size((1, 1, model.decoder.config.vocab_size))
self.assertEqual(outputs.logits.shape, expected_shape)
expected_slice = torch.tensor(
[-5.6816, -5.8388, 1.1398, -6.9034, 6.8505, -2.4393, 1.2284, -1.0232, -1.9661, -3.9210]
).to(torch_device)
self.assertTrue(torch.allclose(logits[0, 0, :10], expected_slice, atol=1e-4))
@require_vision
@require_torch
class ViT2GPT2ModelIntegrationTest(unittest.TestCase):
@slow
def test_inference_coco_en(self):
loc = "ydshieh/vit-gpt2-coco-en"
feature_extractor = ViTFeatureExtractor.from_pretrained(loc)
tokenizer = AutoTokenizer.from_pretrained(loc)
model = VisionEncoderDecoderModel.from_pretrained(loc)
model.to(torch_device)
model.eval()
# We will verify our results on an image of cute cats
img = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png")
pixel_values = feature_extractor(images=img, return_tensors="pt").pixel_values.to(torch_device)
decoder_input_ids = torch.tensor([[model.config.decoder_start_token_id]]).to(torch_device)
with torch.no_grad():
logits = model(pixel_values, decoder_input_ids)[0].detach().cpu().numpy()
# verify the logits
expected_shape = (1, 1, model.config.decoder.vocab_size)
self.assertEqual(logits.shape, expected_shape)
EXPECTED_LOGIT_SLICE = np.array(
[
-38.705807,
-30.639929,
-31.41903,
-39.012012,
-38.38696,
-34.887207,
-33.290855,
-35.68447,
-38.508484,
-36.124645,
]
)
max_diff = np.amax(np.abs(logits[0, 0, :10] - EXPECTED_LOGIT_SLICE))
self.assertLessEqual(max_diff, 1e-4)
def generate_step(pixel_values):
outputs = model.generate(
pixel_values, max_length=16, num_beams=4, return_dict_in_generate=True, output_scores=True
)
output_ids = outputs.sequences
preds = tokenizer.batch_decode(output_ids, skip_special_tokens=True)
preds = [pred.strip() for pred in preds]
return preds, outputs.sequences_scores.detach().cpu().numpy()
preds, scores = generate_step(pixel_values)
EXPECTED_SCORES = np.array([-0.59562886])
max_diff = np.amax(np.abs(scores - EXPECTED_SCORES))
self.assertLessEqual(max_diff, 1e-4)
# should produce
# ["a cat laying on top of a couch next to another cat"]
self.assertEqual(preds, ["a cat laying on top of a couch next to another cat"])