transformers/tests/models/idefics/test_modeling_tf_idefics.py
Alazar 94306352f4
Port IDEFICS to tensorflow (#26870)
* Initial commit

* Just a copy of modeling_idefics.py that will be ported to TF

* - Prepend TF to the name of all classes
- Convert pytorch ops to TF (not all operations are converted yet)

* Add TF imports

* Add autotranslated files

* Add TF classes to model_tf_auto.py

* Add the TF classes in model_doc

* include auto-translated code

* Adopted from auto-translated version

* Add a forgotten super().build

* Add test code for TF version.

* Fix indentation and load pytorch weights for now

* Some fixes. Many tests are still failing but some are passing now.

- I have added TODO's for some of the hacks I made to unblock me
  and I will address them soon
- I have the processing_idefics.py hacked in my view to support TF temporarily

* Add ALL_LAYERNORM_LAYERS to match pytorch

* Revert "Add ALL_LAYERNORM_LAYERS to match pytorch"

This reverts commit 7e0a35119b4d7a6284d04d8c543fba1b29e573c9 as it
is not needed in the tf implementation.

* Fix freeze_relevant_params()

* Some more fixes

* Fix test_attention_outputs

* Add tf stuff to processing_idefics.py

processing_idefics.py supports both pytorch and tf now.

test_processor_idefics.py for pytorch is passing, so i didn't break anything
but still some issues with tf. I also need to add tf tests in
test_processor_idefics.py.

* Pass return_tensors to image processing code and fix test

* Pass return_tensors to the image processor __init__

* Fix several test cases

- Make input to some of the forward pass of type `TFModelInputType`
- Decorate main layer forward pass with `@unpack_inputs`
- Decorate main layer with `@keras_serializable`
- Pass `inputs` to TFIdeficsModel

* Some more fixes forgotten in last commit

* Fix processing code and vision_tf.py

* Fix perceiver bug

* Import from

* Auto-add build() methods + style pass

* Fix build() errors due to `None` being passed as shape to some layers

* Change name in TFIdeficsForVisionText2Text to attribute in IdeficsForVisionText2Text

* Fix pytorch weights load for tf2

There were a lot of `name=` missing in weight initialization code.

* Attempt to fix CI

* Add back accidently removed line

* Remove torch-specific stuff from the TF test file

* make fix-copies, make style, remove autotranslated files

* Fixes to imports/docstrings

* Let's try the from future import in desperation

* Fix the core random_attention_mask fn to match the torch/flax behaviour

* Clean random_attention_mask up correctly

* Remove torch-only test

* Fix loss shape, couple of nits

* make style

* Don't test for OOB embeddings because IDEFICS uses those deliberately

* Fix loss computation to handle masking

* Fix test failures when flattening

* Fix some test failures

- Add cross attention gate which was missing and wasn't being passed arround
- Fix overwriting of image_attention_mask due to hack I had for dummy inputs

* Add a proper stateless scaled_dot_product_attention

* make style

* Adding missing attribute from the PyTorch version

* Small cleanups to decoupledlinearlayer in case that helps

* Pass epsilon to LayerNormalization

* Attemp to fix pytorch weight cross-loading for TFIdeficsEmbedding

* Fix a bug in TFIdeficsGatedCrossAttentionLayer

* Patching up build() methods

* Constant self.inv_freq

* Constant self.inv_freq

* First working version

The TF implementation works now, there was a bug in the TFIdeficsDecoupledLinear
where the weights were mis-intialized (in_features,out_features)
when it should be: (out_features, in_features)

I have tested this so far with tiny-random and idefics-9b-instruct
and gives correct output.

I also dumped the final outputs for both pytorch and TF
and they are identical.

* Fix some test failures

* remove print statement

* Fix return_tensors

* Fix CI test failure check_code_quality

* Attempt to fix CI failures by running `make fixup`

The hardcoded IDs in test_modeling_tf_idefics.py are for the integration
test and makes that file unreadable and should probably be moved to a seperate file.

* Attempt to fix tests_pr_documentation_tests

* Fix a test failure in test_image_processing_idefics.py

* Fix test test_pt_tf_model_equivalence

* Fix a few failures

* Tiny fix

* Some minor fixes

* Remove a duplicate test

* Override a few test failures for IDEFICS

- `test_keras_save_load` is passing now
- `test_compile_tf_model` is still failing

* Fix processing_idefics.py after rebase

* Guard import keras with is_tf_available

* fix check code quality

* fix check code quality

* Minor fixes

* Skip test_save_load temporarily

This test passed on my local box but fails on the CI, skipping
for now to see if there are other remaining failures on the CI.

* Run `ruff format tests src utils`

* Fix last failing test, `test_compile_tf_model`

* Add fixes for vision_tf.py

I forgot to add this file in last commit.

* Minor fixes

* Replace "<<<" with "<<" for doc tests

IDEFICS-9B is too big for doctest runner, so don't run it there

* Make code more readable

* Fix bug after code review

I added a layer_norm_eps to IdeficsConfig but I don't even need it
since the vision config has a layer_norm_eps.

* Fix after code review

Use original code tokenizer.convert_tokens_to_ids

* Keep PyTorch as the default return_tensors

* Fixes to modeling_tf after code review

* Fixes from code review

- Remove all references of `TF_IDEFICS_PRETRAINED_MODEL_ARCHIVE_LIST`
- Pass 1e-5 to LayerNormalization in perceiver

* Run ruff

* Undo a change

* Refactor processing code after Matt's suggestion

* Remove TODO's that aren't needed anymore

* For pytorch, Use original pytorch processing code from main

Since this PR is a TF port it shouldn't make any modifications
to pytorch IDEFICS code. This changes undo's the pytorch processing
modifications I made and uses original code from main.

* Update tests/models/idefics/test_modeling_idefics.py

* Update tests/models/idefics/test_modeling_tf_idefics.py

* Add missing imports for is_pt_tf_cross_test

* [DO NOT MERGE]: This is a commit for debugging and will be reverted

The cross test `test_pt_tf_model_equivalence` passes locally but
fails when running on the CI. This commit is to help debug that
and will be reverted.

* Revert "[DO NOT MERGE]: This is a commit for debugging and will be reverted"

This reverts commit 8f0d709ec5bd46685fb0b4259d914ffee794875b.

* [DO NOT MERGE]: This commit is for debugging a CI failure and will be reverted

* [DO NOT MERGE]: This commit is for debugging a CI failure and will be reverted

* Revert "[DO NOT MERGE]: This commit is for debugging a CI failure and will be reverted"

This reverts commit 998cc38b8c3d313bf5e5eb55a7f5b7b881897b89.

* Revert "[DO NOT MERGE]: This commit is for debugging a CI failure and will be reverted"

This reverts commit 1c695ac4219c4ae4d39b330b01744dc27deb7dd4.

* Don't skip test_save_load

IIRC test_save_load was also failing on the CI but not on my local
box, it might be easier to debug that on the CI first than the cross tests

* Debugging commit, will be reverted

* Revert "Debugging commit, will be reverted"

This reverts commit 8eafc8e41e20c4e95a3a90834f06a6e9f445e2d5.

* Override `test_save_load` and push model to save

Maybe this will help me repro this weird bug

* pass my repo_id

* add endpoint

* Pass a temp (write) token just for this CI

* Undo last few commits, still pushing to hub for model debugging

The issue seems to be with save_pretrained(),  when I looked at the model saved
from the CI test failure it is basically empty and has no weights.
`self.save_weights(..)` seems to be failing in save_pretrained but needs
more debugging

* Add logging to modeling tf utils, will be reverted just for debugging

* Debugging, will revert

* Revert "Debugging, will revert"

This reverts commit 9d0d3075fb7c82d8cde3a5c76bc8f3876c5c55d3.

* Revert "Add logging to modeling tf utils, will be reverted just for debugging"

This reverts commit 774b6b7b1c17b3ce5d7634ade768f2f686cee617.

* Remove `test_save_load`

The CI failures are gone after my latest rebase, no idea why
but I was still saving the model to my hub on HF and the tf_model.h5
file now has everything.

* Run make fix-copies

* Run ruff format tests src utils

* Debugging commit, will be reverted

* Run ruff, also trigger CI run

* Run ruff again

* Undo debugging commit

---------

Co-authored-by: Matt <rocketknight1@gmail.com>
Co-authored-by: Matt <Rocketknight1@users.noreply.github.com>
2024-05-13 15:59:46 +01:00

566 lines
25 KiB
Python

# coding=utf-8
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Testing suite for the TF Idefics model. """
import os
import tempfile
import unittest
from importlib import import_module
from transformers import IdeficsConfig, is_tf_available, is_vision_available
from transformers.testing_utils import TestCasePlus, is_pt_tf_cross_test, require_tf, require_vision, slow
from transformers.utils import cached_property
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import IdeficsProcessor, TFIdeficsForVisionText2Text, TFIdeficsModel
from transformers.modeling_tf_utils import keras
from transformers.models.idefics.configuration_idefics import IdeficsPerceiverConfig, IdeficsVisionConfig
if is_vision_available():
from PIL import Image
IDEFICS_TINY_RANDOM_MODEL = "HuggingFaceM4/tiny-random-idefics"
class IdeficsModelTester:
def __init__(
self,
parent,
batch_size=1,
seq_length=7,
image_size=30,
patch_size=2,
num_channels=3,
is_training=True,
use_input_mask=True,
use_token_type_ids=True,
use_labels=True,
vocab_size=99,
hidden_size=32,
num_hidden_layers=5,
num_attention_heads=4,
intermediate_size=37,
hidden_act="gelu",
hidden_dropout_prob=0.1,
attention_probs_dropout_prob=0.1,
max_position_embeddings=512,
type_vocab_size=16,
type_sequence_label_size=2,
initializer_range=0.02,
num_labels=3,
scope=None,
modality_type_vocab_size=2,
vision_embed_dim=32,
vision_patch_size=2,
vision_image_size=30,
vision_num_attention_heads=4,
vision_num_hidden_layers=5,
vision_intermediate_size=37,
perceiver_qk_layer_norms_perceiver=False,
perceiver_resampler_depth=2,
perceiver_resampler_head_dim=8,
perceiver_resampler_n_heads=2,
perceiver_resampler_n_latents=16,
):
self.parent = parent
self.batch_size = batch_size
self.seq_length = seq_length
self.image_size = image_size
self.patch_size = patch_size
self.num_channels = num_channels
self.is_training = is_training
self.use_input_mask = use_input_mask
self.use_token_type_ids = use_token_type_ids
self.use_labels = use_labels
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.intermediate_size = intermediate_size
self.hidden_act = hidden_act
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.max_position_embeddings = max_position_embeddings
self.type_vocab_size = type_vocab_size
self.type_sequence_label_size = type_sequence_label_size
self.initializer_range = initializer_range
self.num_labels = num_labels
self.scope = scope
self.modality_type_vocab_size = modality_type_vocab_size
self.vision_embed_dim = vision_embed_dim
self.vision_patch_size = vision_patch_size
self.vision_image_size = vision_image_size
self.vision_num_attention_heads = vision_num_attention_heads
self.vision_num_hidden_layers = vision_num_hidden_layers
self.vision_intermediate_size = vision_intermediate_size
self.vision_config = IdeficsVisionConfig(
embed_dim=self.vision_embed_dim,
patch_size=self.vision_patch_size,
image_size=self.vision_image_size,
num_attention_heads=self.vision_num_attention_heads,
num_hidden_layers=self.vision_num_hidden_layers,
intermediate_size=self.vision_intermediate_size,
)
self.perceiver_qk_layer_norms_perceiver = perceiver_qk_layer_norms_perceiver
self.perceiver_resampler_depth = perceiver_resampler_depth
self.perceiver_resampler_head_dim = perceiver_resampler_head_dim
self.perceiver_resampler_n_heads = perceiver_resampler_n_heads
self.perceiver_resampler_n_latents = perceiver_resampler_n_latents
self.perceiver_config = IdeficsPerceiverConfig(
qk_layer_norms_perceiver=self.perceiver_qk_layer_norms_perceiver,
resampler_depth=self.perceiver_resampler_depth,
resampler_head_dim=self.perceiver_resampler_head_dim,
resampler_n_heads=self.perceiver_resampler_n_heads,
resampler_n_latents=self.perceiver_resampler_n_latents,
)
# we set the expected sequence length (which is used in several tests)
# this is equal to the seq length of the text tokens + number of image patches + 1 for the CLS token
self.expected_seq_len = self.seq_length + (self.image_size // self.patch_size) ** 2 + 1
def prepare_config_and_inputs(self, num_images=1, interpolate_pos_encoding=False, image_expansion=0):
input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
pixel_values = floats_tensor(
[
self.batch_size,
num_images,
self.num_channels,
self.image_size + image_expansion,
self.image_size + image_expansion,
]
)
input_mask = None
if self.use_input_mask:
input_mask = random_attention_mask([self.batch_size, self.seq_length])
image_attention_mask = random_attention_mask([self.batch_size, self.seq_length, num_images])
config = self.get_config()
return (config, input_ids, input_mask, pixel_values, image_attention_mask, interpolate_pos_encoding)
def get_config(self):
return IdeficsConfig(
image_size=self.image_size,
patch_size=self.patch_size,
num_channels=self.num_channels,
vocab_size=self.vocab_size,
hidden_size=self.hidden_size,
num_hidden_layers=self.num_hidden_layers,
num_attention_heads=self.num_attention_heads,
intermediate_size=self.intermediate_size,
hidden_act=self.hidden_act,
hidden_dropout_prob=self.hidden_dropout_prob,
attention_probs_dropout_prob=self.attention_probs_dropout_prob,
max_position_embeddings=self.max_position_embeddings,
type_vocab_size=self.type_vocab_size,
is_decoder=False,
initializer_range=self.initializer_range,
num_labels=self.num_labels,
modality_type_vocab_size=self.modality_type_vocab_size,
vision_config=self.vision_config,
)
def create_and_check_model(
self,
config,
input_ids,
input_mask,
pixel_values,
image_attention_mask,
interpolate_pos_encoding,
):
model = TFIdeficsModel(config=config)
result = model(
input_ids,
attention_mask=input_mask,
pixel_values=pixel_values,
image_attention_mask=image_attention_mask,
interpolate_pos_encoding=interpolate_pos_encoding,
)
self.parent.assertEqual(
result.last_hidden_state.shape, (self.batch_size, input_ids.shape[1], self.hidden_size)
)
def create_and_check_model_gen(
self,
config,
input_ids,
input_mask,
pixel_values,
image_attention_mask,
interpolate_pos_encoding,
):
model = TFIdeficsForVisionText2Text(config)
model.generate(
input_ids,
attention_mask=input_mask,
pixel_values=pixel_values,
image_attention_mask=image_attention_mask,
interpolate_pos_encoding=interpolate_pos_encoding,
max_length=self.seq_length + 2,
)
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
(
config,
input_ids,
input_mask,
pixel_values,
image_attention_mask,
interpolate_pos_encoding,
) = config_and_inputs
inputs_dict = {
"input_ids": input_ids,
"attention_mask": input_mask,
"pixel_values": pixel_values,
"image_attention_mask": image_attention_mask,
"interpolate_pos_encoding": interpolate_pos_encoding,
}
return config, inputs_dict
def prepare_pixel_values(self):
return floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size])
@require_tf
class TFIdeficsModelTest(TFModelTesterMixin, PipelineTesterMixin, unittest.TestCase):
all_model_classes = (TFIdeficsModel, TFIdeficsForVisionText2Text) if is_tf_available() else ()
pipeline_model_mapping = {"feature-extraction": TFIdeficsModel} if is_tf_available() else {}
test_pruning = False
test_headmasking = False
test_onnx = False
test_resize_embeddings = False
def _prepare_for_class(self, inputs_dict, model_class, return_labels=False):
inputs_dict = super()._prepare_for_class(inputs_dict, model_class, return_labels=return_labels)
# XXX: IdeficsForVisionText2TextTest has no MODEL_FOR group yet, but it should be the same
# as MODEL_FOR_CAUSAL_LM_MAPPING_NAMES, so for now manually changing to do the right thing
# as super won't do it
if return_labels:
inputs_dict["labels"] = tf.zeros(
(self.model_tester.batch_size, self.model_tester.seq_length), dtype=tf.int64
)
return inputs_dict
def test_model_outputs_equivalence(self):
try:
orig = self.all_model_classes
# IdeficsModel.forward doesn't have labels input arg - only IdeficsForVisionText2Text does
self.all_model_classes = (TFIdeficsForVisionText2Text,) if is_tf_available() else ()
super().test_model_outputs_equivalence()
finally:
self.all_model_classes = orig
def setUp(self):
self.model_tester = IdeficsModelTester(self)
self.config_tester = ConfigTester(self, config_class=IdeficsConfig, hidden_size=37)
def test_config(self):
self.config_tester.run_common_tests()
def test_model_single_image(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs(
num_images=1, interpolate_pos_encoding=False, image_expansion=0
)
self.model_tester.create_and_check_model(*config_and_inputs)
def test_model_multiple_images(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs(
num_images=2, interpolate_pos_encoding=False, image_expansion=0
)
self.model_tester.create_and_check_model(*config_and_inputs)
def test_model_with_image_pos_embeddings_interpolation_single_image(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs(
num_images=1, interpolate_pos_encoding=True, image_expansion=2
)
self.model_tester.create_and_check_model(*config_and_inputs)
config_and_inputs = self.model_tester.prepare_config_and_inputs(
num_images=1, interpolate_pos_encoding=True, image_expansion=0
)
self.model_tester.create_and_check_model(*config_and_inputs)
def test_model_with_image_pos_embeddings_interpolation_multiple_images(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs(
num_images=2, interpolate_pos_encoding=True, image_expansion=2
)
self.model_tester.create_and_check_model(*config_and_inputs)
config_and_inputs = self.model_tester.prepare_config_and_inputs(
num_images=2, interpolate_pos_encoding=True, image_expansion=0
)
self.model_tester.create_and_check_model(*config_and_inputs)
def test_generate_with_image_pos_embeddings_interpolation_single_image(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs(
num_images=1, interpolate_pos_encoding=True, image_expansion=2
)
self.model_tester.create_and_check_model_gen(*config_and_inputs)
def test_generate_with_image_pos_embeddings_interpolation_multiple_images(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs(
num_images=2, interpolate_pos_encoding=True, image_expansion=2
)
self.model_tester.create_and_check_model_gen(*config_and_inputs)
def test_training_gradient_checkpointing(self):
pass
@unittest.skip(reason="""IDEFICS does not support retaining the gradients of the hidden states and attention""")
def test_retain_grad_hidden_states_attentions(self):
return
@unittest.skip(reason="IDEFICS uses out-of-bounds embeddings deliberately.")
def test_embeddings_out_of_bounds_raise_exception(self):
pass
@unittest.skip(reason="IDEFICS attention weights are not extracted in scaled_dot_product_attention")
def test_prepare_serving_output(self):
pass
def test_model_common_attributes(self):
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
model = model_class(config)
self.assertIsInstance(model.get_input_embeddings(), (tf.keras.layers.Layer))
x = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(x, tf.keras.layers.Layer))
def test_attention_outputs(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
config.return_dict = True
for model_class in self.all_model_classes:
inputs_dict["output_attentions"] = True
inputs_dict["output_hidden_states"] = False
config.return_dict = True
model = model_class(config)
outputs = model(**self._prepare_for_class(inputs_dict, model_class))
attentions = outputs.attentions
self.assertEqual(len(attentions), self.model_tester.num_hidden_layers)
# check that output_attentions also work using config
del inputs_dict["output_attentions"]
config.output_attentions = True
model = model_class(config)
outputs = model(**self._prepare_for_class(inputs_dict, model_class))
attentions = outputs.attentions
# IDEFICS does not support outputting attention score becuase it uses SDPA under the hood
self.assertTrue(attentions[0] is None)
out_len = len(outputs)
# Check attention is always last and order is fine
inputs_dict["output_attentions"] = True
inputs_dict["output_hidden_states"] = True
model = model_class(config)
outputs = model(**self._prepare_for_class(inputs_dict, model_class))
self.assertEqual(out_len + 1, len(outputs))
self_attentions = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions
self.assertEqual(len(self_attentions), self.model_tester.num_hidden_layers)
# IDEFICS does not support outputting attention score becuase it uses SDPA under the hood
self.assertTrue(self_attentions[0] is None)
def test_hidden_states_output(self):
def check_hidden_states_output(inputs_dict, config, model_class):
model = model_class(config)
outputs = model(**self._prepare_for_class(inputs_dict, model_class))
hidden_states = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states
expected_num_layers = getattr(
self.model_tester, "expected_num_hidden_layers", self.model_tester.num_hidden_layers + 1
)
self.assertEqual(len(hidden_states), expected_num_layers)
seq_length = self.model_tester.seq_length
self.assertListEqual(
list(hidden_states[0].shape[-2:]),
[seq_length, self.model_tester.hidden_size],
)
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
inputs_dict["output_hidden_states"] = True
check_hidden_states_output(inputs_dict, config, model_class)
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
config.output_hidden_states = True
check_hidden_states_output(inputs_dict, config, model_class)
@is_pt_tf_cross_test
def test_pt_tf_model_equivalence(self, allow_missing_keys=False):
self.has_attentions = False
super().test_pt_tf_model_equivalence(allow_missing_keys=allow_missing_keys)
def test_keras_save_load(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
tf_main_layer_classes = {
module_member
for model_class in self.all_model_classes
for module in (import_module(model_class.__module__),)
for module_member_name in dir(module)
if module_member_name.endswith("MainLayer")
for module_member in (getattr(module, module_member_name),)
if isinstance(module_member, type)
and keras.layers.Layer in module_member.__bases__
and getattr(module_member, "_keras_serializable", False)
}
for main_layer_class in tf_main_layer_classes:
main_layer = main_layer_class(config)
symbolic_inputs = {
name: keras.Input(tensor.shape[1:], dtype=tensor.dtype, batch_size=2)
for name, tensor in inputs_dict.items()
if tf.is_tensor(tensor)
}
model = keras.Model(symbolic_inputs, outputs=main_layer(symbolic_inputs))
outputs = model(inputs_dict)
with tempfile.TemporaryDirectory() as tmpdirname:
filepath = os.path.join(tmpdirname, "keras_model.h5")
model.save(filepath)
model = keras.models.load_model(filepath, custom_objects={main_layer_class.__name__: main_layer_class})
assert isinstance(model, keras.Model)
after_outputs = model(inputs_dict)
self.assert_outputs_same(after_outputs, outputs)
@unittest.skip(reason="IDEFICS test_keras_fit testing done in TFIdeficsForVisionText2TextTest")
def test_keras_fit(self):
pass
@slow
def test_model_from_pretrained(self):
model = TFIdeficsModel.from_pretrained(IDEFICS_TINY_RANDOM_MODEL, from_pt=True)
self.assertIsNotNone(model)
@unittest.skip(reason="Currently `saved_model` doesn't work with nested outputs.")
def test_saved_model_creation(self):
pass
@unittest.skip(reason="""IDEFICS loss computation not implemented yet""")
def test_loss_computation(self):
pass
@require_tf
class TFIdeficsForVisionText2TextTest(TFIdeficsModelTest, unittest.TestCase):
all_model_classes = (TFIdeficsForVisionText2Text,) if is_tf_available() else ()
test_resize_embeddings = False
def setUp(self):
self.model_tester = IdeficsModelTester(
self,
modality_type_vocab_size=3,
)
self.config_tester = ConfigTester(self, config_class=IdeficsConfig, hidden_size=37)
@unittest.skip("We only test the model that takes in multiple images")
def test_model(self):
pass
@unittest.skip("We only test the model that takes in multiple images")
def test_for_token_classification(self):
pass
@unittest.skip(reason="""IDEFICS does not support retaining the gradients of the hidden states and attention""")
def test_retain_grad_hidden_states_attentions(self):
pass
@unittest.skip(reason="""IDEFICS loss computation not implemented yet""")
def test_loss_computation(self):
pass
@slow
def test_keras_fit(self):
super().test_keras_fit()
# Below is the expected output for the integration test TFIdeficsModelIntegrationTest.
# Since we are using tiny-random to be able to fit it on the CI GPU,it is better to assert on the
# ids because the generated text is gibberish
# fmt: off
EXPECTED_GENERATED_IDS = [[0, 0, 1, 4911, 29901, 32000, 32001, 32000, 20355, 915, 445, 1967, 29889, 13, 7900, 22137, 29901, 530, 1967, 310, 1023, 26361, 29889, 13, 2659, 29901, 32000, 32001, 32000, 20355, 915, 445, 1967, 29889, 13, 7900, 22137, 29901, 25519, 22326, 8071, 26357, 28004, 4428, 5916, 14383, 1033, 12358, 10536, 21834, 10447, 21201, 18102, 16886, 8875, 25388, 25914, 28304, 8558, 31048, 1322, 25952, 189, 31600, 3600, 12824, 7045, 28090, 20228, 32001, 5385, 29186, 2165, 11822, 13825, 23077, 7883, 22504, 2078, 18893, 2179, 10556, 9515, 7672, 3491, 12403, 5398, 27299, 6463, 16349, 23037, 28956, 16960, 22664, 7724, 17587, 17424, 10175, 17417, 5930, 30855, 17695, 16170, 14474, 29996, 313, 14502, 3241, 13618, 32001, 5385, 29186, 2165, 11822, 13825, 19934, 4875, 27142, 3230, 2709, 28054, 3270, 19148, 10917, 1060, 26443, 12259, 1347, 28482, 3830, 25519, 199, 12782, 9144, 12289, 1142, 18400, 21390, 19129, 7292, 28430, 24711, 5551, 30349, 30533, 13271, 17697, 4982, 8713, 5380, 17869, 12490, 5398, 27299, 11593, 19918, 15924, 29430, 10175, 17417, 5930, 30855, 17695, 16170, 14474, 19234],
[1, 4911, 29901, 32000, 32001, 32000, 20355, 915, 445, 1967, 29889, 13, 7900, 22137, 29901, 530, 1967, 310, 1023, 413, 986, 575, 29889, 13, 2659, 29901, 32000, 32001, 32000, 20355, 915, 445, 1967, 29889, 13, 7900, 22137, 29901, 25519, 22326, 8071, 26357, 28004, 4428, 17554, 20500, 21714, 27834, 4798, 12195, 30379, 5427, 20228, 10473, 14351, 8049, 15605, 14491, 212, 2711, 32000, 21714, 31259, 24368, 19036, 22970, 26083, 19394, 20372, 7672, 9939, 25388, 30533, 8200, 30271, 2114, 24749, 13224, 10603, 21118, 2179, 3759, 16515, 6587, 1287, 23998, 17793, 32001, 5385, 29186, 2165, 11822, 13825, 29732, 17503, 2729, 6722, 2943, 1221, 16043, 18244, 24965, 14383, 19840, 5980, 13488, 28531, 735, 26146, 22504, 2078, 18893, 20372, 7672, 32001, 5385, 29186, 2165, 11822, 13825, 29732, 17503, 2729, 6722, 19551, 220, 10528, 28940, 4453, 28266, 15416, 18693, 8199, 1153, 27706, 29231, 29186, 2165, 11822, 13825, 29732, 17503, 2729, 6722, 19551, 8231, 10739, 31992, 25906, 22254, 23127, 7689, 19614, 1149, 18844, 23037, 28956, 16960, 22664, 6975, 28938, 24002, 11026, 15020, 21964, 16307], ]
@require_tf
@require_vision
class TFIdeficsModelIntegrationTest(TestCasePlus):
@cached_property
def default_processor(self):
return IdeficsProcessor.from_pretrained(IDEFICS_TINY_RANDOM_MODEL) if is_vision_available() else None
@slow
def test_inference_natural_language_visual_reasoning(self):
cat_image_path = self.tests_dir / "fixtures/tests_samples/COCO/000000039769.png"
cats_image_obj = Image.open(cat_image_path) # 2 cats
dogs_image_url = "https://huggingface.co/datasets/hf-internal-testing/fixtures_nlvr2/raw/main/image1.jpeg"
prompts = [
[
"User:",
dogs_image_url,
"Describe this image.\nAssistant: An image of two dogs.\n",
"User:",
cats_image_obj,
"Describe this image.\nAssistant:",
],
[
"User:",
cats_image_obj,
"Describe this image.\nAssistant: An image of two kittens.\n",
"User:",
dogs_image_url,
"Describe this image.\nAssistant:",
],
]
model = TFIdeficsForVisionText2Text.from_pretrained(IDEFICS_TINY_RANDOM_MODEL, from_pt=True)
processor = self.default_processor
inputs = processor(prompts, return_tensors="tf")
generated_ids = model.generate(**inputs, max_length=100)
generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)
# keep for debugging
for i, t in enumerate(generated_text):
t = bytes(t, "utf-8").decode("unicode_escape")
print(f"{i}:\n{t}\n")
self.assertListEqual(EXPECTED_GENERATED_IDS[0], generated_ids[0].numpy().tolist())
self.assertListEqual(EXPECTED_GENERATED_IDS[1], generated_ids[1].numpy().tolist())