mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-15 10:38:23 +06:00
109 lines
3.6 KiB
Python
109 lines
3.6 KiB
Python
import re
|
||
import ftfy
|
||
import json
|
||
import spacy
|
||
|
||
from tqdm import tqdm
|
||
|
||
def get_pairs(word):
|
||
"""
|
||
Return set of symbol pairs in a word.
|
||
word is represented as tuple of symbols (symbols being variable-length strings)
|
||
"""
|
||
pairs = set()
|
||
prev_char = word[0]
|
||
for char in word[1:]:
|
||
pairs.add((prev_char, char))
|
||
prev_char = char
|
||
return pairs
|
||
|
||
def text_standardize(text):
|
||
"""
|
||
fixes some issues the spacy tokenizer had on books corpus
|
||
also does some whitespace standardization
|
||
"""
|
||
text = text.replace('—', '-')
|
||
text = text.replace('–', '-')
|
||
text = text.replace('―', '-')
|
||
text = text.replace('…', '...')
|
||
text = text.replace('´', "'")
|
||
text = re.sub(r'''(-+|~+|!+|"+|;+|\?+|\++|,+|\)+|\(+|\\+|\/+|\*+|\[+|\]+|}+|{+|\|+|_+)''', r' \1 ', text)
|
||
text = re.sub(r'\s*\n\s*', ' \n ', text)
|
||
text = re.sub(r'[^\S\n]+', ' ', text)
|
||
return text.strip()
|
||
|
||
class TextEncoder(object):
|
||
"""
|
||
mostly a wrapper for a public python bpe tokenizer
|
||
"""
|
||
|
||
def __init__(self, encoder_path, bpe_path):
|
||
self.nlp = spacy.load('en', disable=['parser', 'tagger', 'ner', 'textcat'])
|
||
self.encoder = json.load(open(encoder_path))
|
||
self.decoder = {v:k for k,v in self.encoder.items()}
|
||
merges = open(bpe_path, encoding='utf-8').read().split('\n')[1:-1]
|
||
merges = [tuple(merge.split()) for merge in merges]
|
||
self.bpe_ranks = dict(zip(merges, range(len(merges))))
|
||
self.cache = {}
|
||
|
||
def bpe(self, token):
|
||
word = tuple(token[:-1]) + ( token[-1] + '</w>',)
|
||
if token in self.cache:
|
||
return self.cache[token]
|
||
pairs = get_pairs(word)
|
||
|
||
if not pairs:
|
||
return token+'</w>'
|
||
|
||
while True:
|
||
bigram = min(pairs, key = lambda pair: self.bpe_ranks.get(pair, float('inf')))
|
||
if bigram not in self.bpe_ranks:
|
||
break
|
||
first, second = bigram
|
||
new_word = []
|
||
i = 0
|
||
while i < len(word):
|
||
try:
|
||
j = word.index(first, i)
|
||
new_word.extend(word[i:j])
|
||
i = j
|
||
except:
|
||
new_word.extend(word[i:])
|
||
break
|
||
|
||
if word[i] == first and i < len(word)-1 and word[i+1] == second:
|
||
new_word.append(first+second)
|
||
i += 2
|
||
else:
|
||
new_word.append(word[i])
|
||
i += 1
|
||
new_word = tuple(new_word)
|
||
word = new_word
|
||
if len(word) == 1:
|
||
break
|
||
else:
|
||
pairs = get_pairs(word)
|
||
word = ' '.join(word)
|
||
if word == '\n </w>':
|
||
word = '\n</w>'
|
||
self.cache[token] = word
|
||
return word
|
||
|
||
def encode(self, texts, verbose=True):
|
||
texts_tokens = []
|
||
if verbose:
|
||
for text in tqdm(texts, ncols=80, leave=False):
|
||
text = self.nlp(text_standardize(ftfy.fix_text(text)))
|
||
text_tokens = []
|
||
for token in text:
|
||
text_tokens.extend([self.encoder.get(t, 0) for t in self.bpe(token.text.lower()).split(' ')])
|
||
texts_tokens.append(text_tokens)
|
||
else:
|
||
for text in texts:
|
||
text = self.nlp(text_standardize(ftfy.fix_text(text)))
|
||
text_tokens = []
|
||
for token in text:
|
||
text_tokens.extend([self.encoder.get(t, 0) for t in self.bpe(token.text.lower()).split(' ')])
|
||
texts_tokens.append(text_tokens)
|
||
return texts_tokens
|