transformers/model_cards/facebook/rag-sequence-base
Patrick von Platen 9397436ea5
Create README.md
2020-09-18 16:52:00 +02:00
..
README.md Create README.md 2020-09-18 16:52:00 +02:00

RAG

This is a "base" version of the RAG-Sequence Model of the the paper Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks by Patrick Lewis, Ethan Perez, Aleksandara Piktus et al.

Usage:

from transformers import RagTokenizer, RagRetriever, RagSequenceForGeneration

tokenizer = RagTokenizer.from_pretrained("facebook/rag-sequence-base")
retriever = RagRetriever.from_pretrained("facebook/rag-sequence-base", index_name="exact", use_dummy_dataset=True)
model = RagSequenceForGeneration.from_pretrained("facebook/rag-sequence-base", retriever=retriever)

input_ids = tokenizer("What is the largest country in the world?", return_tensors="pt").input_ids

generated = model.generate(input_ids=input_ids)
generated_string = tokenizer.batch_decode(generated, skip_special_tokens=True)

# => should give ["Asia ended in 2010 when China overtook Japan to become the world's second largest economy."]
# Interesting answer. Definitely on topic, but might factual probably not fully correct.