transformers/tests/models/mamba2/test_modeling_mamba2.py
Kirire 935bbbc711
Add config validation and style tweaks (#37589)
* Add config validation and style tweaks

* Fix style issues

* Fix style issues

* style

* Small fixes for copy/paste errors

---------

Co-authored-by: Cyrile <cyrile.delestre@arkea.com>
2025-05-14 12:22:10 +00:00

484 lines
20 KiB
Python

# Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
from parameterized import parameterized
from transformers import AutoTokenizer, Mamba2Config, is_torch_available
from transformers.testing_utils import (
Expectations,
require_read_token,
require_torch,
require_torch_accelerator,
slow,
torch_device,
)
from transformers.utils.import_utils import is_causal_conv1d_available, is_mamba_2_ssm_available
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
Mamba2ForCausalLM,
Mamba2Model,
)
from transformers.models.mamba2.modeling_mamba2 import Mamba2Cache, Mamba2Mixer
class Mamba2ConfigTester(ConfigTester):
def _create_config(self, hidden_size: int, num_heads: int, expand: int, head_dim: int):
_input_dict = self.inputs_dict.copy()
_input_dict["hidden_size"] = hidden_size
_input_dict["num_heads"] = num_heads
_input_dict["expand"] = expand
_input_dict["head_dim"] = head_dim
return self.config_class(**_input_dict)
def test_hidden_size_compatibility(self):
self._create_config(hidden_size=2, num_heads=2, expand=2, head_dim=2)
self._create_config(hidden_size=4, num_heads=4, expand=2, head_dim=2)
self._create_config(hidden_size=2, num_heads=4, expand=4, head_dim=2)
with self.parent.assertRaises(ValueError):
self._create_config(hidden_size=2, num_heads=4, expand=2, head_dim=4)
with self.parent.assertRaises(ValueError):
self._create_config(hidden_size=4, num_heads=2, expand=4, head_dim=2)
def run_common_tests(self):
self.test_hidden_size_compatibility()
return super().run_common_tests()
class Mamba2ModelTester:
def __init__(
self,
parent,
batch_size=14,
num_heads=8,
n_groups=8,
state_size=2,
head_dim=8,
conv_kernel=4,
chunk_size=8,
seq_length=7,
is_training=True,
use_labels=True,
vocab_size=99,
hidden_size=32,
num_hidden_layers=2,
hidden_act="silu",
hidden_dropout_prob=0.1,
max_position_embeddings=512,
type_vocab_size=16,
type_sequence_label_size=2,
num_labels=3,
num_choices=4,
scope=None,
tie_word_embeddings=False,
):
self.parent = parent
self.num_heads = num_heads
self.n_groups = n_groups
self.head_dim = head_dim
self.state_size = state_size
self.conv_kernel = conv_kernel
self.chunk_size = chunk_size
self.batch_size = batch_size
self.seq_length = seq_length
self.is_training = is_training
self.use_labels = use_labels
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.hidden_act = hidden_act
self.hidden_dropout_prob = hidden_dropout_prob
self.max_position_embeddings = max_position_embeddings
self.type_vocab_size = type_vocab_size
self.type_sequence_label_size = type_sequence_label_size
self.num_labels = num_labels
self.num_choices = num_choices
self.scope = scope
self.bos_token_id = vocab_size - 1
self.eos_token_id = vocab_size - 1
self.pad_token_id = vocab_size - 1
self.tie_word_embeddings = tie_word_embeddings
def get_large_model_config(self):
return Mamba2Config.from_pretrained("mistralai/Mamba-Codestral-7B-v0.1")
def prepare_config_and_inputs(
self, gradient_checkpointing=False, scale_attn_by_inverse_layer_idx=False, reorder_and_upcast_attn=False
):
input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
# Only left padding is valid
attention_mask = torch.ones(size=(self.batch_size, self.seq_length), device=input_ids.device, dtype=torch.long)
attention_mask[0, :1] = 0
sequence_labels = None
token_labels = None
choice_labels = None
if self.use_labels:
sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels)
choice_labels = ids_tensor([self.batch_size], self.num_choices)
config = self.get_config(
gradient_checkpointing=gradient_checkpointing,
)
return (
config,
input_ids,
attention_mask,
sequence_labels,
token_labels,
choice_labels,
)
def get_config(self, gradient_checkpointing=False):
return Mamba2Config(
head_dim=self.head_dim,
num_heads=self.num_heads,
n_groups=self.n_groups,
state_size=self.state_size,
conv_kernel=self.conv_kernel,
chunk_size=self.chunk_size,
vocab_size=self.vocab_size,
hidden_size=self.hidden_size,
num_hidden_layers=self.num_hidden_layers,
activation_function=self.hidden_act,
n_positions=self.max_position_embeddings,
type_vocab_size=self.type_vocab_size,
use_cache=True,
bos_token_id=self.bos_token_id,
eos_token_id=self.eos_token_id,
pad_token_id=self.pad_token_id,
gradient_checkpointing=gradient_checkpointing,
tie_word_embeddings=self.tie_word_embeddings,
)
def prepare_config_and_inputs_for_common(self):
(
config,
input_ids,
_,
sequence_labels,
token_labels,
choice_labels,
) = self.prepare_config_and_inputs()
inputs_dict = {"input_ids": input_ids}
return config, inputs_dict
def create_and_check_mamba2_caching(self, config, input_ids, attention_mask, *args):
model = Mamba2Model(config=config)
model.to(torch_device)
model.eval()
output_whole = model(input_ids, attention_mask=attention_mask).last_hidden_state
outputs = model(
input_ids[:, :-1],
attention_mask=attention_mask[:, :-1],
use_cache=True,
cache_position=torch.arange(0, config.conv_kernel, device=input_ids.device),
)
output_one = outputs.last_hidden_state
# Using the state computed on the first inputs, we will get the same output
outputs = model(
input_ids[:, -1:],
attention_mask=attention_mask[:, -1:],
use_cache=True,
cache_params=outputs.cache_params,
cache_position=torch.arange(config.conv_kernel, config.conv_kernel + 1, device=input_ids.device),
)
output_two = outputs.last_hidden_state
self.parent.assertTrue(
torch.allclose(torch.cat([output_one, output_two], dim=1), output_whole, atol=1e-3, rtol=1e-3)
)
def create_and_check_mamba2_slow_vs_fast_forward(self, config, input_ids, *args, gradient_checkpointing=False):
model = Mamba2Model(config)
model.eval()
if not (is_mamba_2_ssm_available() and is_causal_conv1d_available()):
self.parent.skipTest(
"This test needs the Mamba2 fast path. Skipping as the necessary packages have not been found."
)
if torch_device != "cuda":
self.parent.skipTest("This test needs the Mamba2 fast path. Skipping as we need a cuda capable device.")
model.to(torch_device)
if gradient_checkpointing:
model.gradient_checkpointing_enable()
token_emb = model.embeddings(input_ids)
outputs_fast = model.layers[0].mixer.cuda_kernels_forward(token_emb)
outputs_slow = model.layers[0].mixer.torch_forward(token_emb)
self.parent.assertTrue(torch.allclose(outputs_fast, outputs_slow, atol=1e-3, rtol=1e-3))
@require_torch
class Mamba2ModelTest(ModelTesterMixin, GenerationTesterMixin, PipelineTesterMixin, unittest.TestCase):
all_model_classes = (Mamba2Model, Mamba2ForCausalLM) if is_torch_available() else ()
has_attentions = False # Mamba does not support attentions
fx_compatible = False # FIXME let's try to support this @molbap
test_torchscript = False # FIXME I think this should be doable @molbap @ArthurZucker
test_missing_keys = False
test_model_parallel = False
test_pruning = False
test_head_masking = False # Mamba does not have attention heads
pipeline_model_mapping = (
{"feature-extraction": Mamba2Model, "text-generation": Mamba2ForCausalLM} if is_torch_available() else {}
)
def setUp(self):
self.model_tester = Mamba2ModelTester(self)
self.config_tester = Mamba2ConfigTester(
self, config_class=Mamba2Config, n_embd=37, common_properties=["hidden_size", "num_hidden_layers"]
)
def test_mamba2_caching(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_mamba2_caching(*config_and_inputs)
def test_mamba2_slow_vs_fast_forward(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_mamba2_slow_vs_fast_forward(*config_and_inputs)
# This test adjusts n_groups to half the original setting and effectively
# creates a grouped SSD configuration in the mamba2 layers
# See https://github.com/huggingface/transformers/pull/37533/
def test_mamba2_slow_vs_fast_forward_grouped(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
config_and_inputs[0].n_groups //= 2
self.model_tester.create_and_check_mamba2_slow_vs_fast_forward(*config_and_inputs)
def test_initialization(self):
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
model = model_class(config=config)
for name, param in model.named_parameters():
if "D" in name:
if param.requires_grad:
# check if it's a ones like
torch.testing.assert_close(param.data, torch.ones_like(param.data), rtol=1e-5, atol=1e-5)
@unittest.skip(reason="Mamba 2 weights are not tied")
def test_tied_weights_keys(self):
pass
@unittest.skip(reason="A large mamba2 would be necessary (and costly) for that")
def test_multi_gpu_data_parallel_forward(self):
pass
def test_model_outputs_equivalence(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
def check_equivalence(model, tuple_inputs, dict_inputs, additional_kwargs={}):
with torch.no_grad():
tuple_output = model(**tuple_inputs, return_dict=False, **additional_kwargs)
dict_output = model(**dict_inputs, return_dict=True, **additional_kwargs).to_tuple()
def recursive_check(tuple_object, dict_object):
if isinstance(tuple_object, Mamba2Cache): # MODIFIED PART START
recursive_check(tuple_object.conv_states, dict_object.conv_states)
recursive_check(tuple_object.ssm_states, dict_object.ssm_states)
elif isinstance(tuple_object, (list, tuple)): # MODIFIED PART END
for tuple_iterable_value, dict_iterable_value in zip(tuple_object, dict_object):
recursive_check(tuple_iterable_value, dict_iterable_value)
elif isinstance(tuple_object, dict):
for tuple_iterable_value, dict_iterable_value in zip(
tuple_object.values(), dict_object.values()
):
recursive_check(tuple_iterable_value, dict_iterable_value)
elif tuple_object is None:
return
else:
self.assertTrue(
torch.allclose(tuple_object, dict_object, atol=1e-5),
msg=(
"Tuple and dict output are not equal. Difference:"
f" {torch.max(torch.abs(tuple_object - dict_object))}. Tuple has `nan`:"
f" {torch.isnan(tuple_object).any()} and `inf`: {torch.isinf(tuple_object)}. Dict has"
f" `nan`: {torch.isnan(dict_object).any()} and `inf`: {torch.isinf(dict_object)}."
),
)
recursive_check(tuple_output, dict_output)
for model_class in self.all_model_classes:
model = model_class(config)
model.to(torch_device)
model.eval()
tuple_inputs = self._prepare_for_class(inputs_dict, model_class)
dict_inputs = self._prepare_for_class(inputs_dict, model_class)
check_equivalence(model, tuple_inputs, dict_inputs)
tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
check_equivalence(model, tuple_inputs, dict_inputs)
tuple_inputs = self._prepare_for_class(inputs_dict, model_class)
dict_inputs = self._prepare_for_class(inputs_dict, model_class)
check_equivalence(model, tuple_inputs, dict_inputs, {"output_hidden_states": True})
tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
check_equivalence(model, tuple_inputs, dict_inputs, {"output_hidden_states": True})
@require_torch
@slow
@require_read_token
class Mamba2IntegrationTest(unittest.TestCase):
def setUp(self):
self.model_id = "mistralai/Mamba-Codestral-7B-v0.1"
self.tokenizer = AutoTokenizer.from_pretrained(self.model_id, from_slow=True, legacy=False)
self.prompt = ("[INST]Write a hello world program in C++.",)
@require_read_token
@parameterized.expand(
[
(torch_device,),
]
)
@slow
@require_torch
def test_simple_generate(self, device):
"""
Simple generate test to avoid regressions.
Note: state-spaces (cuda) implementation and pure torch implementation
have irreconciliable differences as of now, which will cause this test to fail
in an environment with state-spaces installed.
"""
tokenizer = self.tokenizer
tokenizer.pad_token_id = tokenizer.eos_token_id
model = Mamba2ForCausalLM.from_pretrained(self.model_id, torch_dtype=torch.bfloat16)
model.to(device)
input_ids = tokenizer("[INST]Write a hello world program in C++.[/INST]", return_tensors="pt")["input_ids"].to(
device
)
out = model.generate(input_ids, do_sample=False, use_cache=True, max_new_tokens=30)
output_sentence = tokenizer.decode(out[0])
ground_truth_sentences = Expectations(
{
("xpu", 3): """<s>[INST]Write a hello world program in C++.[/INST] Sure, here is a simple "Hello, World!" program written in C++:\n\n```cpp\n#include <iostream>\n""",
("cuda", 7): """<s>[INST]Write a hello world program in C++.[/INST] Sure, here is a simple "Hello, World!" program in C++:\n\n```cpp\n#include <iostream>\n\n""",
}
) # fmt: skip
ground_truth_sentence = ground_truth_sentences.get_expectation()
self.assertEqual(output_sentence, ground_truth_sentence)
@require_read_token
@slow
@require_torch_accelerator
def test_batched_equivalence_with_cache(self):
"""
Verifies that batched generation matches individual generation.
Important because of the specific caching mechanism + statefulness of mamba model.
Depending on precision and devices, differences can be observed from generation to generation.
"""
tokenizer = self.tokenizer
prompt = [
"[INST]Write C#.[/INST]",
"[INST]Write a hello world in C++.[/INST]",
"[INST] Write a simple Fibonacci number computation function in Rust that does memoization, with comments, in safe Rust.[/INST]",
]
model = Mamba2ForCausalLM.from_pretrained(self.model_id, torch_dtype=torch.bfloat16).to(torch_device)
tokenizer.pad_token_id = tokenizer.eos_token_id
# batched generation
tokenized_prompts = tokenizer(prompt, return_tensors="pt", padding="longest").to(torch_device)
batched_gen = model.generate(**tokenized_prompts, max_new_tokens=30, use_cache=True)
batched_output = tokenizer.batch_decode(batched_gen, skip_special_tokens=True)
# individual generation
for index_gen, individual_prompt in enumerate(prompt):
inputs = tokenizer(individual_prompt, return_tensors="pt", padding="longest").to(torch_device)
individual_gen = model.generate(**inputs, max_new_tokens=30, use_cache=True)
individual_output = tokenizer.batch_decode(individual_gen, skip_special_tokens=True)[0]
self.assertEqual(individual_output[:100], batched_output[index_gen][:100])
@require_read_token
@slow
@require_torch_accelerator
def test_batched_equivalence_without_cache(self):
"""
Verifies that batched generation matches individual generation without cache.
Important because of the specific caching mechanism + statefulness of mamba model.
Depending on precision and devices, differences can be observed from generation to generation.
"""
tokenizer = self.tokenizer
prompt = [
"[INST]Write C#.[/INST]",
"[INST]Write a hello world in C++.[/INST]",
"[INST] Write a simple Fibonacci number computation function in Rust that does memoization, with comments, in safe Rust.[/INST]",
]
model = Mamba2ForCausalLM.from_pretrained(self.model_id, torch_dtype=torch.bfloat16).to(torch_device)
tokenizer.pad_token_id = tokenizer.eos_token_id
# batched generation
tokenized_prompts = tokenizer(prompt, return_tensors="pt", padding="longest").to(torch_device)
batched_gen = model.generate(**tokenized_prompts, max_new_tokens=30, use_cache=True)
batched_output = tokenizer.batch_decode(batched_gen, skip_special_tokens=True)
# individual generation
for index_gen, individual_prompt in enumerate(prompt):
inputs = tokenizer(individual_prompt, return_tensors="pt", padding="longest").to(torch_device)
individual_gen = model.generate(**inputs, max_new_tokens=30, use_cache=True)
individual_output = tokenizer.batch_decode(individual_gen, skip_special_tokens=True)[0]
self.assertEqual(individual_output[:100], batched_output[index_gen][:100])
@slow
@require_torch_accelerator
def test_mamba2_mixer_train_vs_eval_equivalence(self):
# Based on https://github.com/sustcsonglin/flash-linear-attention/issues/63
# Credit to zhixuan-lin
B, T, D = 4, 512, 768
dtype = torch.bfloat16
config = Mamba2Config(num_heads=24, head_dim=64, hidden_size=768, expand=2, n_groups=1)
torch.manual_seed(42)
with torch.amp.autocast(device_type=torch_device, dtype=dtype):
with torch.no_grad():
mixer = Mamba2Mixer(config, layer_idx=0).to(torch_device)
hidden_states = torch.rand(size=(B, T, D), dtype=dtype, device=torch_device)
mixer.train()
out_train = mixer(hidden_states)
mixer.eval()
out_eval = mixer(hidden_states)
torch.testing.assert_close(out_train, out_eval, rtol=1e-3, atol=1e-3)