transformers/tests/test_pipelines_translation.py
Nicolas Patry 92970c0cb9
Enabling multilingual models for translation pipelines. (#10536)
* [WIP] Enabling multilingual models for translation pipelines.

* decoder_input_ids -> forced_bos_token_id

* Improve docstring.

* Rebase

* Fixing 2 bugs

- Type token_ids coming from `_parse_and_tokenize`
- Wrong index from tgt_lang.

* Fixing black version.

* Adding tests for _build_translation_inputs and add them for all
tokenizers.

* Mbart actually puts the lang code at the end.

* Fixing m2m100.

* Adding TF support to `deep_round`.

* Update src/transformers/pipelines/text2text_generation.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Adding one line comment.

* Fixing M2M100 `_build_translation_input_ids`, and fix the call site.

* Fixing tests + deep_round -> nested_simplify

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2021-04-16 11:31:35 +02:00

101 lines
4.2 KiB
Python

# Copyright 2020 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
import pytest
from transformers import pipeline
from transformers.testing_utils import is_pipeline_test, is_torch_available, require_torch, slow
from .test_pipelines_common import MonoInputPipelineCommonMixin
if is_torch_available():
from transformers.models.mbart import MBart50TokenizerFast, MBartForConditionalGeneration
class TranslationEnToDePipelineTests(MonoInputPipelineCommonMixin, unittest.TestCase):
pipeline_task = "translation_en_to_de"
small_models = ["patrickvonplaten/t5-tiny-random"] # Default model - Models tested without the @slow decorator
large_models = [None] # Models tested with the @slow decorator
invalid_inputs = [4, "<mask>"]
mandatory_keys = ["translation_text"]
class TranslationEnToRoPipelineTests(MonoInputPipelineCommonMixin, unittest.TestCase):
pipeline_task = "translation_en_to_ro"
small_models = ["patrickvonplaten/t5-tiny-random"] # Default model - Models tested without the @slow decorator
large_models = [None] # Models tested with the @slow decorator
invalid_inputs = [4, "<mask>"]
mandatory_keys = ["translation_text"]
@is_pipeline_test
class TranslationNewFormatPipelineTests(unittest.TestCase):
@require_torch
@slow
def test_default_translations(self):
# We don't provide a default for this pair
with self.assertRaises(ValueError):
pipeline(task="translation_cn_to_ar")
# but we do for this one
translator = pipeline(task="translation_en_to_de")
self.assertEquals(translator.src_lang, "en")
self.assertEquals(translator.tgt_lang, "de")
@require_torch
@slow
def test_multilingual_translation(self):
model = MBartForConditionalGeneration.from_pretrained("facebook/mbart-large-50-many-to-many-mmt")
tokenizer = MBart50TokenizerFast.from_pretrained("facebook/mbart-large-50-many-to-many-mmt")
translator = pipeline(task="translation", model=model, tokenizer=tokenizer)
# Missing src_lang, tgt_lang
with self.assertRaises(ValueError):
translator("This is a test")
outputs = translator("This is a test", src_lang="en_XX", tgt_lang="ar_AR")
self.assertEqual(outputs, [{"translation_text": "هذا إختبار"}])
outputs = translator("This is a test", src_lang="en_XX", tgt_lang="hi_IN")
self.assertEqual(outputs, [{"translation_text": "यह एक परीक्षण है"}])
# src_lang, tgt_lang can be defined at pipeline call time
translator = pipeline(task="translation", model=model, tokenizer=tokenizer, src_lang="en_XX", tgt_lang="ar_AR")
outputs = translator("This is a test")
self.assertEqual(outputs, [{"translation_text": "هذا إختبار"}])
@require_torch
def test_translation_on_odd_language(self):
model = "patrickvonplaten/t5-tiny-random"
translator = pipeline(task="translation_cn_to_ar", model=model)
self.assertEquals(translator.src_lang, "cn")
self.assertEquals(translator.tgt_lang, "ar")
@require_torch
def test_translation_default_language_selection(self):
model = "patrickvonplaten/t5-tiny-random"
with pytest.warns(UserWarning, match=r".*translation_en_to_de.*"):
nlp = pipeline(task="translation", model=model)
self.assertEqual(nlp.task, "translation_en_to_de")
self.assertEquals(nlp.src_lang, "en")
self.assertEquals(nlp.tgt_lang, "de")
@require_torch
def test_translation_with_no_language_no_model_fails(self):
with self.assertRaises(ValueError):
pipeline(task="translation")