mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-14 10:08:29 +06:00

* [WIP] Enabling multilingual models for translation pipelines. * decoder_input_ids -> forced_bos_token_id * Improve docstring. * Rebase * Fixing 2 bugs - Type token_ids coming from `_parse_and_tokenize` - Wrong index from tgt_lang. * Fixing black version. * Adding tests for _build_translation_inputs and add them for all tokenizers. * Mbart actually puts the lang code at the end. * Fixing m2m100. * Adding TF support to `deep_round`. * Update src/transformers/pipelines/text2text_generation.py Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com> * Adding one line comment. * Fixing M2M100 `_build_translation_input_ids`, and fix the call site. * Fixing tests + deep_round -> nested_simplify Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
101 lines
4.2 KiB
Python
101 lines
4.2 KiB
Python
# Copyright 2020 The HuggingFace Team. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import unittest
|
|
|
|
import pytest
|
|
|
|
from transformers import pipeline
|
|
from transformers.testing_utils import is_pipeline_test, is_torch_available, require_torch, slow
|
|
|
|
from .test_pipelines_common import MonoInputPipelineCommonMixin
|
|
|
|
|
|
if is_torch_available():
|
|
from transformers.models.mbart import MBart50TokenizerFast, MBartForConditionalGeneration
|
|
|
|
|
|
class TranslationEnToDePipelineTests(MonoInputPipelineCommonMixin, unittest.TestCase):
|
|
pipeline_task = "translation_en_to_de"
|
|
small_models = ["patrickvonplaten/t5-tiny-random"] # Default model - Models tested without the @slow decorator
|
|
large_models = [None] # Models tested with the @slow decorator
|
|
invalid_inputs = [4, "<mask>"]
|
|
mandatory_keys = ["translation_text"]
|
|
|
|
|
|
class TranslationEnToRoPipelineTests(MonoInputPipelineCommonMixin, unittest.TestCase):
|
|
pipeline_task = "translation_en_to_ro"
|
|
small_models = ["patrickvonplaten/t5-tiny-random"] # Default model - Models tested without the @slow decorator
|
|
large_models = [None] # Models tested with the @slow decorator
|
|
invalid_inputs = [4, "<mask>"]
|
|
mandatory_keys = ["translation_text"]
|
|
|
|
|
|
@is_pipeline_test
|
|
class TranslationNewFormatPipelineTests(unittest.TestCase):
|
|
@require_torch
|
|
@slow
|
|
def test_default_translations(self):
|
|
# We don't provide a default for this pair
|
|
with self.assertRaises(ValueError):
|
|
pipeline(task="translation_cn_to_ar")
|
|
|
|
# but we do for this one
|
|
translator = pipeline(task="translation_en_to_de")
|
|
self.assertEquals(translator.src_lang, "en")
|
|
self.assertEquals(translator.tgt_lang, "de")
|
|
|
|
@require_torch
|
|
@slow
|
|
def test_multilingual_translation(self):
|
|
model = MBartForConditionalGeneration.from_pretrained("facebook/mbart-large-50-many-to-many-mmt")
|
|
tokenizer = MBart50TokenizerFast.from_pretrained("facebook/mbart-large-50-many-to-many-mmt")
|
|
|
|
translator = pipeline(task="translation", model=model, tokenizer=tokenizer)
|
|
# Missing src_lang, tgt_lang
|
|
with self.assertRaises(ValueError):
|
|
translator("This is a test")
|
|
|
|
outputs = translator("This is a test", src_lang="en_XX", tgt_lang="ar_AR")
|
|
self.assertEqual(outputs, [{"translation_text": "هذا إختبار"}])
|
|
|
|
outputs = translator("This is a test", src_lang="en_XX", tgt_lang="hi_IN")
|
|
self.assertEqual(outputs, [{"translation_text": "यह एक परीक्षण है"}])
|
|
|
|
# src_lang, tgt_lang can be defined at pipeline call time
|
|
translator = pipeline(task="translation", model=model, tokenizer=tokenizer, src_lang="en_XX", tgt_lang="ar_AR")
|
|
outputs = translator("This is a test")
|
|
self.assertEqual(outputs, [{"translation_text": "هذا إختبار"}])
|
|
|
|
@require_torch
|
|
def test_translation_on_odd_language(self):
|
|
model = "patrickvonplaten/t5-tiny-random"
|
|
translator = pipeline(task="translation_cn_to_ar", model=model)
|
|
self.assertEquals(translator.src_lang, "cn")
|
|
self.assertEquals(translator.tgt_lang, "ar")
|
|
|
|
@require_torch
|
|
def test_translation_default_language_selection(self):
|
|
model = "patrickvonplaten/t5-tiny-random"
|
|
with pytest.warns(UserWarning, match=r".*translation_en_to_de.*"):
|
|
nlp = pipeline(task="translation", model=model)
|
|
self.assertEqual(nlp.task, "translation_en_to_de")
|
|
self.assertEquals(nlp.src_lang, "en")
|
|
self.assertEquals(nlp.tgt_lang, "de")
|
|
|
|
@require_torch
|
|
def test_translation_with_no_language_no_model_fails(self):
|
|
with self.assertRaises(ValueError):
|
|
pipeline(task="translation")
|