transformers/docs/source/model_doc/trocr.mdx
Sylvain Gugger 8f6373c61c
Map model_type and doc pages names (#14944)
* Map model_type and doc pages names

* Add script

* Fix typo

* Quality

* Manual check for Auto

Co-authored-by: Lysandre <lysandre.debut@reseau.eseo.fr>
2022-01-03 05:08:55 -05:00

102 lines
4.8 KiB
Plaintext

<!--Copyright 2021 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the
License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an
"AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License. -->
# TrOCR
## Overview
The TrOCR model was proposed in [TrOCR: Transformer-based Optical Character Recognition with Pre-trained
Models](https://arxiv.org/abs/2109.10282) by Minghao Li, Tengchao Lv, Lei Cui, Yijuan Lu, Dinei Florencio, Cha Zhang,
Zhoujun Li, Furu Wei. TrOCR consists of an image Transformer encoder and an autoregressive text Transformer decoder to
perform [optical character recognition (OCR)](https://en.wikipedia.org/wiki/Optical_character_recognition).
The abstract from the paper is the following:
*Text recognition is a long-standing research problem for document digitalization. Existing approaches for text recognition
are usually built based on CNN for image understanding and RNN for char-level text generation. In addition, another language
model is usually needed to improve the overall accuracy as a post-processing step. In this paper, we propose an end-to-end
text recognition approach with pre-trained image Transformer and text Transformer models, namely TrOCR, which leverages the
Transformer architecture for both image understanding and wordpiece-level text generation. The TrOCR model is simple but
effective, and can be pre-trained with large-scale synthetic data and fine-tuned with human-labeled datasets. Experiments
show that the TrOCR model outperforms the current state-of-the-art models on both printed and handwritten text recognition
tasks.*
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/trocr_architecture.jpg"
alt="drawing" width="600"/>
<small> TrOCR architecture. Taken from the <a href="https://arxiv.org/abs/2109.10282">original paper</a>. </small>
Please refer to the [`VisionEncoderDecoder`] class on how to use this model.
This model was contributed by [nielsr](https://huggingface.co/nielsr). The original code can be found
[here](https://github.com/microsoft/unilm/tree/6f60612e7cc86a2a1ae85c47231507a587ab4e01/trocr).
Tips:
- The quickest way to get started with TrOCR is by checking the [tutorial
notebooks](https://github.com/NielsRogge/Transformers-Tutorials/tree/master/TrOCR), which show how to use the model
at inference time as well as fine-tuning on custom data.
- TrOCR is pre-trained in 2 stages before being fine-tuned on downstream datasets. It achieves state-of-the-art results
on both printed (e.g. the [SROIE dataset](https://paperswithcode.com/dataset/sroie) and handwritten (e.g. the [IAM
Handwriting dataset](https://fki.tic.heia-fr.ch/databases/iam-handwriting-database>) text recognition tasks. For more
information, see the [official models](https://huggingface.co/models?other=trocr>).
- TrOCR is always used within the [VisionEncoderDecoder](vision-encoder-decoder) framework.
## Inference
TrOCR's [`VisionEncoderDecoder`] model accepts images as input and makes use of
[`~generation_utils.GenerationMixin.generate`] to autoregressively generate text given the input image.
The [`ViTFeatureExtractor`] class is responsible for preprocessing the input image and
[`RobertaTokenizer`] decodes the generated target tokens to the target string. The
[`TrOCRProcessor`] wraps [`ViTFeatureExtractor`] and [`RobertaTokenizer`]
into a single instance to both extract the input features and decode the predicted token ids.
- Step-by-step Optical Character Recognition (OCR)
``` py
>>> from transformers import TrOCRProcessor, VisionEncoderDecoderModel
>>> import requests
>>> from PIL import Image
>>> processor = TrOCRProcessor.from_pretrained("microsoft/trocr-base-handwritten")
>>> model = VisionEncoderDecoderModel.from_pretrained("microsoft/trocr-base-handwritten")
>>> # load image from the IAM dataset url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw).convert("RGB")
>>> pixel_values = processor(image, return_tensors="pt").pixel_values
>>> generated_ids = model.generate(pixel_values)
>>> generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
```
See the [model hub](https://huggingface.co/models?filter=trocr) to look for TrOCR checkpoints.
## TrOCRConfig
[[autodoc]] TrOCRConfig
## TrOCRProcessor
[[autodoc]] TrOCRProcessor
- __call__
- from_pretrained
- save_pretrained
- batch_decode
- decode
- as_target_processor
## TrOCRForCausalLM
[[autodoc]] TrOCRForCausalLM
- forward