transformers/tests/models/florence2/test_modeling_florence2.py
Duc-Viet Hoang 8e7aa374cf update
2025-05-20 22:55:40 +07:00

434 lines
15 KiB
Python

# coding=utf-8
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Testing suite for the PyTorch Florence2 model."""
import gc
import unittest
import requests
from transformers import (
AutoProcessor,
Florence2Config,
Florence2ForConditionalGeneration,
is_torch_available,
is_vision_available,
)
from transformers.testing_utils import (
require_torch,
require_vision,
slow,
torch_device,
)
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
if is_torch_available():
import torch
else:
is_torch_greater_or_equal_than_2_0 = False
if is_vision_available():
from PIL import Image
class Florence2VisionText2TextModelTester:
def __init__(
self,
parent,
seq_length=7,
text_config={
"vocab_size": 51289,
"activation_dropout": 0.1,
"activation_function": "gelu",
"add_bias_logits": False,
"add_final_layer_norm": False,
"attention_dropout": 0.1,
"bos_token_id": 0,
"classif_dropout": 0.1,
"classifier_dropout": 0.0,
"d_model": 8,
"decoder_attention_heads": 1,
"decoder_ffn_dim": 8,
"decoder_layerdrop": 0.0,
"decoder_layers": 1,
"decoder_start_token_id": 2,
"dropout": 0.1,
"early_stopping": True,
"encoder_attention_heads": 1,
"encoder_ffn_dim": 8,
"encoder_layerdrop": 0.0,
"encoder_layers": 1,
"eos_token_id": 2,
"forced_eos_token_id": 2,
"forced_bos_token_id": 0,
"gradient_checkpointing": False,
"init_std": 0.02,
"is_encoder_decoder": True,
"label2id": {"LABEL_0": 0, "LABEL_1": 1, "LABEL_2": 2},
"max_position_embeddings": 64,
"no_repeat_ngram_size": 3,
"normalize_before": False,
"num_hidden_layers": 1,
"pad_token_id": 1,
"scale_embedding": False,
"num_beams": 3,
},
is_training=True,
vision_config={
"model_type": "davit",
"drop_path_rate": 0.1,
"patch_size": [7],
"patch_stride": [4],
"patch_padding": [1],
"patch_prenorm": [False],
"enable_checkpoint": False,
"dim_embed": [8],
"num_heads": [1],
"num_groups": [1],
"depths": [1],
"window_size": 12,
"projection_dim": 8,
"visual_temporal_embedding": {"type": "COSINE", "max_temporal_embeddings": 100},
"image_pos_embed": {"type": "learned_abs_2d", "max_pos_embeddings": 50},
"image_feature_source": ["spatial_avg_pool", "temporal_avg_pool"],
},
):
self.parent = parent
self.text_config = text_config
self.vision_config = vision_config
self.pad_token_id = text_config["pad_token_id"]
self.num_hidden_layers = text_config["num_hidden_layers"]
self.vocab_size = text_config["vocab_size"]
self.is_training = is_training
self.batch_size = 3
self.num_channels = 3
self.image_size = 8
self.seq_length = seq_length
def get_config(self):
return Florence2Config(
text_config=self.text_config,
vision_config=self.vision_config,
)
def prepare_config_and_inputs(self):
pixel_values = floats_tensor(
[
self.batch_size,
self.num_channels,
self.image_size,
self.image_size,
]
)
config = self.get_config()
return config, pixel_values
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
config, pixel_values = config_and_inputs
input_ids = ids_tensor([self.batch_size, self.seq_length], config.text_config.vocab_size - 1) + 1
decoder_input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
attention_mask = input_ids.ne(1).to(torch_device)
inputs_dict = {
"decoder_input_ids": decoder_input_ids,
"pixel_values": pixel_values,
"input_ids": input_ids,
"attention_mask": attention_mask,
}
return config, inputs_dict
def create_and_check_florence2_model_fp16_forward(self, config, input_ids, pixel_values, attention_mask):
model = Florence2ForConditionalGeneration(config=config)
model.to(torch_device)
model.eval()
with torch.autocast(device_type="cuda", dtype=torch.float16):
logits = model(
input_ids=input_ids,
attention_mask=attention_mask,
pixel_values=pixel_values.to(torch.bfloat16),
return_dict=True,
)["logits"]
self.parent.assertFalse(torch.isnan(logits).any().item())
@require_torch
class Florence2ForConditionalGenerationModelTest(ModelTesterMixin, unittest.TestCase):
"""
Model tester for `Florence2ForConditionalGeneration`.
"""
all_model_classes = (Florence2ForConditionalGeneration,) if is_torch_available() else ()
all_generative_model_classes = (Florence2ForConditionalGeneration,) if is_torch_available() else ()
pipeline_model_mapping = {"image-to-text": Florence2ForConditionalGeneration} if is_torch_available() else {}
test_pruning = False
test_head_masking = False
test_attention_outputs = False
test_torchscript = False
def setUp(self):
self.model_tester = Florence2VisionText2TextModelTester(self)
self.config_tester = ConfigTester(self, config_class=Florence2Config, has_text_modality=False)
# overwrite inputs_embeds tests because we need to delete "pixel values" for LVLMs
def test_inputs_embeds(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
model = model_class(config)
model.to(torch_device)
model.eval()
inputs = self._prepare_for_class(inputs_dict, model_class)
input_ids = inputs["input_ids"]
del inputs["input_ids"]
del inputs["pixel_values"]
wte = model.get_input_embeddings()
inputs["inputs_embeds"] = wte(input_ids)
with torch.no_grad():
model(**inputs)
# overwrite inputs_embeds tests because we need to delete "pixel values" for LVLMs
# while some other models require pixel_values to be present
def test_inputs_embeds_matches_input_ids(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
model = model_class(config)
model.to(torch_device)
model.eval()
inputs = self._prepare_for_class(inputs_dict, model_class)
input_ids = inputs["input_ids"]
del inputs["input_ids"]
del inputs["pixel_values"]
inputs_embeds = model.get_input_embeddings()(input_ids)
with torch.no_grad():
out_ids = model(input_ids=input_ids, **inputs)[0]
out_embeds = model(inputs_embeds=inputs_embeds, **inputs)[0]
self.assertTrue(torch.allclose(out_embeds, out_ids))
@unittest.skip(
reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124"
)
def test_training_gradient_checkpointing(self):
pass
@unittest.skip(
reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124"
)
def test_training_gradient_checkpointing_use_reentrant(self):
pass
@unittest.skip(
reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124"
)
def test_training_gradient_checkpointing_use_reentrant_false(self):
pass
@unittest.skip(reason="0.00023532799968961626 not found in [0.0, 1.0] : Parameter image_projection")
def test_initialization(self):
pass
@unittest.skip(reason="no attribute 'hidden_states'")
def test_hidden_states_output(self):
pass
@unittest.skip(reason="no attribute 'hidden_states'")
def test_retain_grad_hidden_states_attentions(self):
pass
@unittest.skip(reason="flaky")
def test_batching_equivalence(self):
pass
@unittest.skip(reason="Not supported")
def test_model_get_set_embeddings(self):
pass
@unittest.skip(reason="Not supported")
def test_tied_weights_keys(self):
pass
@unittest.skip(reason="Not supported")
def test_feed_forward_chunking(self):
pass
@unittest.skip(reason="Not supported")
def test_can_use_safetensors(self):
pass
@unittest.skip(reason="Not supported")
def test_model_outputs_equivalence(self):
pass
@unittest.skip(reason="Not supported")
def test_eager_matches_sdpa_inference_0_float16(self):
pass
@unittest.skip(reason="Not supported")
def test_eager_matches_sdpa_inference_1_bfloat16(self):
pass
@unittest.skip(reason="Not supported")
def test_load_save_without_tied_weights(self):
pass
@unittest.skip(reason="Not supported")
def test_save_load(self):
pass
@unittest.skip(reason="Not supported")
def test_save_load_low_cpu_mem_usage(self):
pass
@unittest.skip(reason="Not supported")
def test_sdpa_can_dispatch_non_composite_models(self):
pass
@unittest.skip(reason="Not supported")
def test_eager_matches_sdpa_inference_2_float32(self):
pass
@unittest.skip(reason="Not supported yet")
def test_determinism(self):
pass
@require_torch
class Florence2ForConditionalGenerationIntegrationTest(unittest.TestCase):
def setUp(self):
self.processor = AutoProcessor.from_pretrained("microsoft/Florence-2-base")
def tearDown(self):
gc.collect()
torch.cuda.empty_cache()
@slow
def test_small_model_integration_test(self):
model = Florence2ForConditionalGeneration.from_pretrained("microsoft/Florence-2-base")
prompt = "<CAPTION>"
image_file = (
"https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/car.jpg"
)
raw_image = Image.open(requests.get(image_file, stream=True).raw)
inputs = self.processor(images=raw_image, text=prompt, return_tensors="pt")
EXPECTED_INPUT_IDS = torch.tensor([[0, 2264, 473, 5, 2274, 6190, 116, 2]]) # fmt: skip
self.assertTrue(torch.equal(inputs["input_ids"], EXPECTED_INPUT_IDS))
output = model.generate(**inputs, max_new_tokens=20)
EXPECTED_DECODED_TEXT = "A green car parked in front of a yellow building." # fmt: skip
self.assertEqual(
self.processor.decode(output[0], skip_special_tokens=True),
EXPECTED_DECODED_TEXT,
)
@slow
def test_small_model_integration_test_florence_single(self):
model_id = "microsoft/Florence-2-base"
model = Florence2ForConditionalGeneration.from_pretrained("microsoft/Florence-2-base")
processor = AutoProcessor.from_pretrained(model_id)
prompt = "<CAPTION>"
image_file = (
"https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/car.jpg"
)
raw_image = Image.open(requests.get(image_file, stream=True).raw)
inputs = processor(images=raw_image, text=prompt, return_tensors="pt").to(torch_device, torch.float16)
output = model.generate(**inputs, max_new_tokens=900, do_sample=False)
EXPECTED_DECODED_TEXT = "A green car parked in front of a yellow building." # fmt: skip
self.assertEqual(
processor.decode(output[0], skip_special_tokens=True),
EXPECTED_DECODED_TEXT,
)
@slow
def test_small_model_integration_test_batch(self):
model = Florence2ForConditionalGeneration.from_pretrained("microsoft/Florence-2-base")
prompts = [
"<CAPTION>",
"<CAPTION>",
]
image1 = Image.open(
requests.get(
"https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/car.jpg",
stream=True,
).raw
)
image2 = Image.open(requests.get("http://images.cocodataset.org/val2017/000000039769.jpg", stream=True).raw)
inputs = self.processor(images=[image1, image2], text=prompts, return_tensors="pt", padding=True)
output = model.generate(**inputs, max_new_tokens=20)
EXPECTED_DECODED_TEXT = ['A green car parked in front of a yellow building.', 'Two cats laying on a pink couch next to a remote control.'] # fmt: skip
self.assertEqual(
self.processor.batch_decode(output, skip_special_tokens=True),
EXPECTED_DECODED_TEXT,
)
@slow
@require_torch
@require_vision
def test_batched_generation(self):
model = Florence2ForConditionalGeneration.from_pretrained("microsoft/Florence-2-base")
processor = AutoProcessor.from_pretrained("microsoft/Florence-2-base")
prompt1 = "<CAPTION>"
prompt2 = "<CAPTION>"
prompt3 = "<CAPTION>"
url1 = "https://images.unsplash.com/photo-1552053831-71594a27632d?q=80&w=3062&auto=format&fit=crop&ixlib=rb-4.0.3&ixid=M3wxMjA3fDB8MHxwaG90by1wYWdlfHx8fGVufDB8fHx8fA%3D%3D"
url2 = "https://images.unsplash.com/photo-1617258683320-61900b281ced?q=80&w=3087&auto=format&fit=crop&ixlib=rb-4.0.3&ixid=M3wxMjA3fDB8MHxwaG90by1wYWdlfHx8fGVufDB8fHx8fA%3D%3D"
image1 = Image.open(requests.get(url1, stream=True).raw)
image2 = Image.open(requests.get(url2, stream=True).raw)
inputs = processor(
images=[image1, image2, image1, image2],
text=[prompt1, prompt1, prompt2, prompt3],
return_tensors="pt",
padding=True,
).to(torch_device)
model = model.eval()
EXPECTED_OUTPUT = [
"A dog sitting on a patio holding a flower in its mouth.",
"A baby llama standing on top of a hill.",
"A dog sitting on a patio holding a flower in its mouth.",
"A baby llama standing on top of a hill.",
]
generate_ids = model.generate(**inputs, max_new_tokens=20)
outputs = processor.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)
self.assertEqual(outputs, EXPECTED_OUTPUT)