transformers/utils/update_metadata.py
Tony Wu f33a0cebb3
Add ColPali to 🤗 transformers (#33736)
* feat: run `add-new-model-like`

* feat: add paligemma code with "copied from"

* feat: add ColPaliProcessor

* feat: add ColPaliModel

* feat: add ColPaliConfig

* feat: rename `ColPaliForConditionalGeneration` to `ColPaliModel`

* fixup modeling colpali

* fix: fix root import shortcuts

* fix: fix `modeling_auto` dict

* feat: comment out ColPali test file

* fix: fix typos from `add-new-model-like`

* feat: explicit the forward input args

* feat: move everything to `modular_colpali.py`

* fix: put back ColPaliProcesor

* feat: add auto-generated files

* fix: run `fix-copies`

* fix: remove DOCStRING constants to make modular converter work

* fix: fix typo + modular converter

* fix: add missing imports

* feat: no more errors when loading ColPaliModel

* fix: remove unused args in forward + tweak doc

* feat: rename `ColPaliModel` to `ColPaliForRetrieval`

* fix: apply `fix-copies`

* feat: add ColPaliProcessor to `modular_colpali`

* fix: run make quality + make style

* fix: remove duplicate line in configuration_auto

* feat: make ColPaliModel inehrit from PaliGemmaForConditionalGeneration

* fix: tweak and use ColPaliConfig

* feat: rename `score` to `post_process_retrieval`

* build: run modular formatter + make style

* feat: convert colpali weights + fixes

* feat: remove old weight converter file

* feat: add and validate tests

* feat: replace harcoded path to "vidore/colpali-v1.2-hf" in tests

* fix: add bfloat16 conversion in weight converter

* feat: replace pytest with unittest in modeling colpali test

* feat: add sanity check for weight conversion (doesn't work yet)

* feat: add shape sanity check in weigth converter

* feat: make ColPaliProcessor args explicit

* doc: add doc for ColPali

* fix: trying to fix output mismatch

* feat: tweaks

* fix: ColPaliModelOutput inherits from ModelOutput instead of PaliGemmaCausalLMOutputWithPast

* fix: address comments on PR

* fix: adapt tests to the Hf norm

* wip: try things

* feat: add `__call__` method to `ColPaliProcessor`

* feat: remove need for dummy image in `process_queries`

* build: run new modular converter

* fix: fix incorrect method override

* Fix tests, processing, modular, convert

* fix tokenization auto

* hotfix: manually fix processor -> fixme once convert modular is fixed

* fix: convert weights working

* feat: rename and improve convert weight script

* feat: tweaks

* fest: remove `device` input for `post_process_retrieval`

* refactor: remove unused `get_torch_device`

* Fix all tests

* docs: update ColPali model doc

* wip: fix convert weights to hf

* fix logging modular

* docs: add acknowledgements in model doc

* docs: add missing docstring to ColPaliProcessor

* docs: tweak

* docs: add doc for `ColPaliForRetrievalOutput.forward`

* feat: add modifications from colpali-engine v0.3.2 in ColPaliProcessor

* fix: fix and upload colapli hf weights

* refactor: rename `post_process_retrieval` to `score_retrieval`

* fix: fix wrong typing for `score_retrieval`

* test: add integration test for ColPali

* chore: rerun convert modular

* build: fix root imports

* Update docs/source/en/index.md

Co-authored-by: Yoni Gozlan <74535834+yonigozlan@users.noreply.github.com>

* fix: address PR comments

* wip: reduce the prediction gap in weight conversion

* docs: add comment in weight conversion script

* docs: add example for `ColPaliForRetrieval.forward`

* tests: change dataset path to the new one in hf-internal

* fix: colpali weight conversion works

* test: add fine-grained check for ColPali integration test

* fix: fix typos in convert weight script

* docs: move input docstring in a variable

* fix: remove hardcoded torch device in test

* fix: run the new modular refactor

* docs: fix python example for ColPali

* feat: add option to choose `score_retrieval`'s output dtype and device

* docs: update doc for `score_retrieval`

* feat: add `patch_size` property in ColPali model

* chore: run `make fix-copies`

* docs: update description for ColPali cookbooks

* fix: remove `ignore_index` methods

* feat: remove non-transformers specific methods

* feat: update `__init__.py` to new hf format

* fix: fix root imports in transformers

* feat: remove ColPali's inheritance from PaliGemma

* Fix CI issues

* nit remove prints

* feat: remove ColPali config and model from `modular_colpali.py`

* feat: add `ColPaliPreTrainedModel` and update modeling and configuration code

* fix: fix auto-removed imports in root `__init__.py`

* fix: various fixes

* fix: fix `_init_weight`

* temp: comment `AutoModel.from_config` for experiments

* fix: add missing `output_attentions` arg in ColPali's forward

* fix: fix `resize_token_embeddings`

* fix: make `input_ids` optional in forward

* feat: rename `projection_layer` to `embedding_proj_layer`

* wip: fix convert colpali weight script

* fix tests and convert weights from original repo

* fix unprotected import

* fix unprotected torch import

* fix style

* change vlm_backbone_config to vlm_config

* fix unprotected import in modular this time

* fix: load config from Hub + tweaks in convert weight script

* docs: move example usage from model docstring to model markdown

* docs: fix input docstring for ColPali's forward method

* fix: use `sub_configs` for ColPaliConfig

* fix: remove non-needed sanity checks in weight conversion script + tweaks

* fix: fix issue with `replace_return_docstrings` in ColPali's `forward`

* docs: update docstring for `ColPaliConfig`

* test: change model path in ColPali test

* fix: fix ColPaliConfig

* fix: fix weight conversion script

* test: fix expected weights for ColPali model

* docs: update ColPali markdown

* docs: fix minor typo in ColPaliProcessor

* Fix tests and add _no_split_modules

* add text_config to colpali config

* [run slow] colpali

* move inputs to torch_device in integration test

* skip test_model_parallelism

* docs: clarify quickstart snippet in ColPali's model card

* docs: update ColPali's model card

---------

Co-authored-by: yonigozlan <yoni.gozlan@huggingface.co>
Co-authored-by: Yoni Gozlan <74535834+yonigozlan@users.noreply.github.com>
2024-12-17 11:26:43 +01:00

373 lines
16 KiB
Python
Executable File

# coding=utf-8
# Copyright 2021 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Utility that updates the metadata of the Transformers library in the repository `huggingface/transformers-metadata`.
Usage for an update (as used by the GitHub action `update_metadata`):
```bash
python utils/update_metadata.py --token <token> --commit_sha <commit_sha>
```
Usage to check all pipelines are properly defined in the constant `PIPELINE_TAGS_AND_AUTO_MODELS` of this script, so
that new pipelines are properly added as metadata (as used in `make repo-consistency`):
```bash
python utils/update_metadata.py --check-only
```
"""
import argparse
import collections
import os
import re
import tempfile
from typing import Dict, List, Tuple
import pandas as pd
from datasets import Dataset
from huggingface_hub import hf_hub_download, upload_folder
from transformers.utils import direct_transformers_import
# All paths are set with the intent you should run this script from the root of the repo with the command
# python utils/update_metadata.py
TRANSFORMERS_PATH = "src/transformers"
# This is to make sure the transformers module imported is the one in the repo.
transformers_module = direct_transformers_import(TRANSFORMERS_PATH)
# Regexes that match TF/Flax/PT model names.
_re_tf_models = re.compile(r"TF(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)")
_re_flax_models = re.compile(r"Flax(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)")
# Will match any TF or Flax model too so need to be in an else branch afterthe two previous regexes.
_re_pt_models = re.compile(r"(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration|ForRetrieval)")
# Fill this with tuples (pipeline_tag, model_mapping, auto_model)
PIPELINE_TAGS_AND_AUTO_MODELS = [
("pretraining", "MODEL_FOR_PRETRAINING_MAPPING_NAMES", "AutoModelForPreTraining"),
("feature-extraction", "MODEL_MAPPING_NAMES", "AutoModel"),
("image-feature-extraction", "MODEL_FOR_IMAGE_MAPPING_NAMES", "AutoModel"),
("audio-classification", "MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES", "AutoModelForAudioClassification"),
("text-generation", "MODEL_FOR_CAUSAL_LM_MAPPING_NAMES", "AutoModelForCausalLM"),
("automatic-speech-recognition", "MODEL_FOR_CTC_MAPPING_NAMES", "AutoModelForCTC"),
("image-classification", "MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES", "AutoModelForImageClassification"),
("image-segmentation", "MODEL_FOR_IMAGE_SEGMENTATION_MAPPING_NAMES", "AutoModelForImageSegmentation"),
("image-text-to-text", "MODEL_FOR_IMAGE_TEXT_TO_TEXT_MAPPING_NAMES", "AutoModelForImageTextToText"),
("image-to-image", "MODEL_FOR_IMAGE_TO_IMAGE_MAPPING_NAMES", "AutoModelForImageToImage"),
("fill-mask", "MODEL_FOR_MASKED_LM_MAPPING_NAMES", "AutoModelForMaskedLM"),
("object-detection", "MODEL_FOR_OBJECT_DETECTION_MAPPING_NAMES", "AutoModelForObjectDetection"),
(
"zero-shot-object-detection",
"MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING_NAMES",
"AutoModelForZeroShotObjectDetection",
),
("question-answering", "MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES", "AutoModelForQuestionAnswering"),
("text2text-generation", "MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES", "AutoModelForSeq2SeqLM"),
("text-classification", "MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES", "AutoModelForSequenceClassification"),
("automatic-speech-recognition", "MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES", "AutoModelForSpeechSeq2Seq"),
(
"table-question-answering",
"MODEL_FOR_TABLE_QUESTION_ANSWERING_MAPPING_NAMES",
"AutoModelForTableQuestionAnswering",
),
("token-classification", "MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES", "AutoModelForTokenClassification"),
("multiple-choice", "MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES", "AutoModelForMultipleChoice"),
(
"next-sentence-prediction",
"MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES",
"AutoModelForNextSentencePrediction",
),
(
"audio-frame-classification",
"MODEL_FOR_AUDIO_FRAME_CLASSIFICATION_MAPPING_NAMES",
"AutoModelForAudioFrameClassification",
),
("audio-xvector", "MODEL_FOR_AUDIO_XVECTOR_MAPPING_NAMES", "AutoModelForAudioXVector"),
(
"document-question-answering",
"MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES",
"AutoModelForDocumentQuestionAnswering",
),
(
"visual-question-answering",
"MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING_NAMES",
"AutoModelForVisualQuestionAnswering",
),
("image-to-text", "MODEL_FOR_FOR_VISION_2_SEQ_MAPPING_NAMES", "AutoModelForVision2Seq"),
(
"zero-shot-image-classification",
"MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING_NAMES",
"AutoModelForZeroShotImageClassification",
),
("depth-estimation", "MODEL_FOR_DEPTH_ESTIMATION_MAPPING_NAMES", "AutoModelForDepthEstimation"),
("video-classification", "MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING_NAMES", "AutoModelForVideoClassification"),
("mask-generation", "MODEL_FOR_MASK_GENERATION_MAPPING_NAMES", "AutoModelForMaskGeneration"),
("text-to-audio", "MODEL_FOR_TEXT_TO_SPECTROGRAM_MAPPING_NAMES", "AutoModelForTextToSpectrogram"),
("text-to-audio", "MODEL_FOR_TEXT_TO_WAVEFORM_MAPPING_NAMES", "AutoModelForTextToWaveform"),
]
def camel_case_split(identifier: str) -> List[str]:
"""
Split a camel-cased name into words.
Args:
identifier (`str`): The camel-cased name to parse.
Returns:
`List[str]`: The list of words in the identifier (as seprated by capital letters).
Example:
```py
>>> camel_case_split("CamelCasedClass")
["Camel", "Cased", "Class"]
```
"""
# Regex thanks to https://stackoverflow.com/questions/29916065/how-to-do-camelcase-split-in-python
matches = re.finditer(".+?(?:(?<=[a-z])(?=[A-Z])|(?<=[A-Z])(?=[A-Z][a-z])|$)", identifier)
return [m.group(0) for m in matches]
def get_frameworks_table() -> pd.DataFrame:
"""
Generates a dataframe containing the supported auto classes for each model type, using the content of the auto
modules.
"""
# Dictionary model names to config.
config_maping_names = transformers_module.models.auto.configuration_auto.CONFIG_MAPPING_NAMES
model_prefix_to_model_type = {
config.replace("Config", ""): model_type for model_type, config in config_maping_names.items()
}
# Dictionaries flagging if each model prefix has a backend in PT/TF/Flax.
pt_models = collections.defaultdict(bool)
tf_models = collections.defaultdict(bool)
flax_models = collections.defaultdict(bool)
# Let's lookup through all transformers object (once) and find if models are supported by a given backend.
for attr_name in dir(transformers_module):
lookup_dict = None
if _re_tf_models.match(attr_name) is not None:
lookup_dict = tf_models
attr_name = _re_tf_models.match(attr_name).groups()[0]
elif _re_flax_models.match(attr_name) is not None:
lookup_dict = flax_models
attr_name = _re_flax_models.match(attr_name).groups()[0]
elif _re_pt_models.match(attr_name) is not None:
lookup_dict = pt_models
attr_name = _re_pt_models.match(attr_name).groups()[0]
if lookup_dict is not None:
while len(attr_name) > 0:
if attr_name in model_prefix_to_model_type:
lookup_dict[model_prefix_to_model_type[attr_name]] = True
break
# Try again after removing the last word in the name
attr_name = "".join(camel_case_split(attr_name)[:-1])
all_models = set(list(pt_models.keys()) + list(tf_models.keys()) + list(flax_models.keys()))
all_models = list(all_models)
all_models.sort()
data = {"model_type": all_models}
data["pytorch"] = [pt_models[t] for t in all_models]
data["tensorflow"] = [tf_models[t] for t in all_models]
data["flax"] = [flax_models[t] for t in all_models]
# Now let's find the right processing class for each model. In order we check if there is a Processor, then a
# Tokenizer, then a FeatureExtractor, then an ImageProcessor
processors = {}
for t in all_models:
if t in transformers_module.models.auto.processing_auto.PROCESSOR_MAPPING_NAMES:
processors[t] = "AutoProcessor"
elif t in transformers_module.models.auto.tokenization_auto.TOKENIZER_MAPPING_NAMES:
processors[t] = "AutoTokenizer"
elif t in transformers_module.models.auto.image_processing_auto.IMAGE_PROCESSOR_MAPPING_NAMES:
processors[t] = "AutoImageProcessor"
elif t in transformers_module.models.auto.feature_extraction_auto.FEATURE_EXTRACTOR_MAPPING_NAMES:
processors[t] = "AutoFeatureExtractor"
else:
# Default to AutoTokenizer if a model has nothing, for backward compatibility.
processors[t] = "AutoTokenizer"
data["processor"] = [processors[t] for t in all_models]
return pd.DataFrame(data)
def update_pipeline_and_auto_class_table(table: Dict[str, Tuple[str, str]]) -> Dict[str, Tuple[str, str]]:
"""
Update the table maping models to pipelines and auto classes without removing old keys if they don't exist anymore.
Args:
table (`Dict[str, Tuple[str, str]]`):
The existing table mapping model names to a tuple containing the pipeline tag and the auto-class name with
which they should be used.
Returns:
`Dict[str, Tuple[str, str]]`: The updated table in the same format.
"""
auto_modules = [
transformers_module.models.auto.modeling_auto,
transformers_module.models.auto.modeling_tf_auto,
transformers_module.models.auto.modeling_flax_auto,
]
for pipeline_tag, model_mapping, auto_class in PIPELINE_TAGS_AND_AUTO_MODELS:
model_mappings = [model_mapping, f"TF_{model_mapping}", f"FLAX_{model_mapping}"]
auto_classes = [auto_class, f"TF_{auto_class}", f"Flax_{auto_class}"]
# Loop through all three frameworks
for module, cls, mapping in zip(auto_modules, auto_classes, model_mappings):
# The type of pipeline may not exist in this framework
if not hasattr(module, mapping):
continue
# First extract all model_names
model_names = []
for name in getattr(module, mapping).values():
if isinstance(name, str):
model_names.append(name)
else:
model_names.extend(list(name))
# Add pipeline tag and auto model class for those models
table.update({model_name: (pipeline_tag, cls) for model_name in model_names})
return table
def update_metadata(token: str, commit_sha: str):
"""
Update the metadata for the Transformers repo in `huggingface/transformers-metadata`.
Args:
token (`str`): A valid token giving write access to `huggingface/transformers-metadata`.
commit_sha (`str`): The commit SHA on Transformers corresponding to this update.
"""
frameworks_table = get_frameworks_table()
frameworks_dataset = Dataset.from_pandas(frameworks_table)
resolved_tags_file = hf_hub_download(
"huggingface/transformers-metadata", "pipeline_tags.json", repo_type="dataset", token=token
)
tags_dataset = Dataset.from_json(resolved_tags_file)
table = {
tags_dataset[i]["model_class"]: (tags_dataset[i]["pipeline_tag"], tags_dataset[i]["auto_class"])
for i in range(len(tags_dataset))
}
table = update_pipeline_and_auto_class_table(table)
# Sort the model classes to avoid some nondeterministic updates to create false update commits.
model_classes = sorted(table.keys())
tags_table = pd.DataFrame(
{
"model_class": model_classes,
"pipeline_tag": [table[m][0] for m in model_classes],
"auto_class": [table[m][1] for m in model_classes],
}
)
tags_dataset = Dataset.from_pandas(tags_table)
hub_frameworks_json = hf_hub_download(
repo_id="huggingface/transformers-metadata",
filename="frameworks.json",
repo_type="dataset",
token=token,
)
with open(hub_frameworks_json) as f:
hub_frameworks_json = f.read()
hub_pipeline_tags_json = hf_hub_download(
repo_id="huggingface/transformers-metadata",
filename="pipeline_tags.json",
repo_type="dataset",
token=token,
)
with open(hub_pipeline_tags_json) as f:
hub_pipeline_tags_json = f.read()
with tempfile.TemporaryDirectory() as tmp_dir:
frameworks_dataset.to_json(os.path.join(tmp_dir, "frameworks.json"))
tags_dataset.to_json(os.path.join(tmp_dir, "pipeline_tags.json"))
with open(os.path.join(tmp_dir, "frameworks.json")) as f:
frameworks_json = f.read()
with open(os.path.join(tmp_dir, "pipeline_tags.json")) as f:
pipeline_tags_json = f.read()
frameworks_equal = hub_frameworks_json == frameworks_json
hub_pipeline_tags_equal = hub_pipeline_tags_json == pipeline_tags_json
if frameworks_equal and hub_pipeline_tags_equal:
print("No updates on the Hub, not pushing the metadata files.")
return
if commit_sha is not None:
commit_message = (
f"Update with commit {commit_sha}\n\nSee: "
f"https://github.com/huggingface/transformers/commit/{commit_sha}"
)
else:
commit_message = "Update"
upload_folder(
repo_id="huggingface/transformers-metadata",
folder_path=tmp_dir,
repo_type="dataset",
token=token,
commit_message=commit_message,
)
def check_pipeline_tags():
"""
Check all pipeline tags are properly defined in the `PIPELINE_TAGS_AND_AUTO_MODELS` constant of this script.
"""
in_table = {tag: cls for tag, _, cls in PIPELINE_TAGS_AND_AUTO_MODELS}
pipeline_tasks = transformers_module.pipelines.SUPPORTED_TASKS
missing = []
for key in pipeline_tasks:
if key not in in_table:
model = pipeline_tasks[key]["pt"]
if isinstance(model, (list, tuple)):
model = model[0]
model = model.__name__
if model not in in_table.values():
missing.append(key)
if len(missing) > 0:
msg = ", ".join(missing)
raise ValueError(
"The following pipeline tags are not present in the `PIPELINE_TAGS_AND_AUTO_MODELS` constant inside "
f"`utils/update_metadata.py`: {msg}. Please add them!"
)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--token", type=str, help="The token to use to push to the transformers-metadata dataset.")
parser.add_argument("--commit_sha", type=str, help="The sha of the commit going with this update.")
parser.add_argument("--check-only", action="store_true", help="Activate to just check all pipelines are present.")
args = parser.parse_args()
if args.check_only:
check_pipeline_tags()
else:
update_metadata(args.token, args.commit_sha)